Interpretable Machine Learning Based on Functional ANOVA Framework: Algorithms and Comparisons

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Linwei Hu, Vijayan N. Nair, Agus Sudjianto, Aijun Zhang, Jie Chen, Zebin Yang
{"title":"Interpretable Machine Learning Based on Functional ANOVA Framework: Algorithms and Comparisons","authors":"Linwei Hu,&nbsp;Vijayan N. Nair,&nbsp;Agus Sudjianto,&nbsp;Aijun Zhang,&nbsp;Jie Chen,&nbsp;Zebin Yang","doi":"10.1002/asmb.2916","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the early days of machine learning (ML), the emphasis was on developing complex algorithms to achieve best possible predictive performance. To understand and explain the model results, one had to rely on post hoc explainability techniques, which are known to have limitations. Recently, with the recognition in regulated industries that interpretability is also important, researchers are studying algorithms that compromise on small increases in predictive performance in favor of being more interpretable. While doing so, the ML community has rediscovered the use of low-order functional ANOVA (fANOVA) models that have been known in the statistical literature for some time. This paper starts with a description of challenges with post hoc explainability. This is followed by a brief review of the fANOVA framework with a focus on models with just main effects and second-order interactions (called generalized additive models with interactions or GAMI = GAM + Interactions). It then provides an overview of two recently developed GAMI techniques: Explainable Boosting Machines or EBM and GAMI-Net. The paper proposes a new algorithm that also uses trees, as in EBM, but does linear fits instead of piecewise constants within the partitions. We refer to this as GAMI-linear-tree (GAMI-Lin-T). There are many other differences, including the development of a new interaction filtering algorithm. The paper uses simulated and real datasets to compare the three fANOVA ML algorithms. The results show that GAMI-Lin-T and GAMI-Net have comparable performances, and both are generally better than EBM.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2916","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the early days of machine learning (ML), the emphasis was on developing complex algorithms to achieve best possible predictive performance. To understand and explain the model results, one had to rely on post hoc explainability techniques, which are known to have limitations. Recently, with the recognition in regulated industries that interpretability is also important, researchers are studying algorithms that compromise on small increases in predictive performance in favor of being more interpretable. While doing so, the ML community has rediscovered the use of low-order functional ANOVA (fANOVA) models that have been known in the statistical literature for some time. This paper starts with a description of challenges with post hoc explainability. This is followed by a brief review of the fANOVA framework with a focus on models with just main effects and second-order interactions (called generalized additive models with interactions or GAMI = GAM + Interactions). It then provides an overview of two recently developed GAMI techniques: Explainable Boosting Machines or EBM and GAMI-Net. The paper proposes a new algorithm that also uses trees, as in EBM, but does linear fits instead of piecewise constants within the partitions. We refer to this as GAMI-linear-tree (GAMI-Lin-T). There are many other differences, including the development of a new interaction filtering algorithm. The paper uses simulated and real datasets to compare the three fANOVA ML algorithms. The results show that GAMI-Lin-T and GAMI-Net have comparable performances, and both are generally better than EBM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信