A principal direction-guided local voxelisation structural feature approach for point cloud registration

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chenyang Li, Yansong Duan
{"title":"A principal direction-guided local voxelisation structural feature approach for point cloud registration","authors":"Chenyang Li,&nbsp;Yansong Duan","doi":"10.1049/cvi2.70000","DOIUrl":null,"url":null,"abstract":"<p>Point cloud registration is a crucial aspect of computer vision and 3D reconstruction. Traditional registration methods often depend on global features or iterative optimisation, leading to inefficiencies and imprecise outcomes when processing complex scene point cloud data. To address these challenges, the authors introduce a principal direction-guided local voxelisation structural feature (PDLVSF) approach for point cloud registration. This method reliably identifies feature points regardless of initial positioning. Approach begins with the 3D Harris algorithm to extract feature points, followed by determining the principal direction within the feature points' radius neighbourhood to ensure rotational invariance. For scale invariance, voxel grid normalisation is utilised to maximise the point cloud's geometric resolution and make it scale-independent. Cosine similarity is then employed for effective feature matching, identifying corresponding feature point pairs and determining transformation parameters between point clouds. Experimental validations on various datasets, including the real terrain dataset, demonstrate the effectiveness of our method. Results indicate superior performance in root mean square error (RMSE) and registration accuracy compared to state-of-the-art methods, particularly in scenarios with high noise, limited overlap, and significant initial pose rotation. The real terrain dataset is publicly available at https://github.com/black-2000/Real-terrain-data.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Point cloud registration is a crucial aspect of computer vision and 3D reconstruction. Traditional registration methods often depend on global features or iterative optimisation, leading to inefficiencies and imprecise outcomes when processing complex scene point cloud data. To address these challenges, the authors introduce a principal direction-guided local voxelisation structural feature (PDLVSF) approach for point cloud registration. This method reliably identifies feature points regardless of initial positioning. Approach begins with the 3D Harris algorithm to extract feature points, followed by determining the principal direction within the feature points' radius neighbourhood to ensure rotational invariance. For scale invariance, voxel grid normalisation is utilised to maximise the point cloud's geometric resolution and make it scale-independent. Cosine similarity is then employed for effective feature matching, identifying corresponding feature point pairs and determining transformation parameters between point clouds. Experimental validations on various datasets, including the real terrain dataset, demonstrate the effectiveness of our method. Results indicate superior performance in root mean square error (RMSE) and registration accuracy compared to state-of-the-art methods, particularly in scenarios with high noise, limited overlap, and significant initial pose rotation. The real terrain dataset is publicly available at https://github.com/black-2000/Real-terrain-data.

Abstract Image

一种主要的方向导向局部体素化结构特征点云配准方法
点云配准是计算机视觉和三维重建的一个重要方面。传统的配准方法往往依赖于全局特征或迭代优化,导致在处理复杂场景点云数据时效率低下,结果不精确。为了解决这些挑战,作者引入了一种主要方向引导的局部体素化结构特征(PDLVSF)方法用于点云配准。无论初始定位如何,该方法都能可靠地识别特征点。该方法首先采用三维Harris算法提取特征点,然后确定特征点半径邻域内的主方向以保证旋转不变性。对于尺度不变性,使用体素网格归一化来最大化点云的几何分辨率并使其与尺度无关。然后利用余弦相似度进行有效的特征匹配,识别对应的特征点对,确定点云之间的变换参数。在包括真实地形数据集在内的各种数据集上的实验验证表明了我们的方法的有效性。结果表明,与最先进的方法相比,该方法在均方根误差(RMSE)和配准精度方面表现优异,特别是在高噪声、有限重叠和显著初始姿态旋转的情况下。真实地形数据集可在https://github.com/black-2000/Real-terrain-data上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信