{"title":"Full-Field Dynamic Displacement Reconstruction of Bridge Based on Modal Learning","authors":"Wen-Yu He, Yi-Fan Li, Ao Gao, Wei-Xin Ren","doi":"10.1155/stc/6511604","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Full-field dynamic displacement (FFDD) is important for bridge condition assessment. However, it is challenging to monitor the FFDD with high accuracy due to limited sensors and environment variation. This paper proposes a FFDD reconstruction method for bridge based on modal learning. Firstly, the transfer function of dynamic strain response of finite points (SRFP) and FFDD are derived based on the beam bending theory and modal superposition method. Then iterative particle swarm optimization (IPSO) is employed to facilitate self-learning of mode shape with the ability of adapting environment variation. Subsequently, the procedure for reconstructing bridge FFDD by utilizing SRFP and the learned transfer function is provided. Finally, the effectiveness of the proposed method is verified by numerical and experimental examples of bridge under random load, impact load, and moving load excitation, and effects of sensor placement, road roughness, and measurement noise on the reconstruction accuracy are systematically investigated. The results indicate that the proposed method can accurately reconstruct the FFDD in the presence of environment variation, road roughness, and measurement noise at the cost of limited sensors.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6511604","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/6511604","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Full-field dynamic displacement (FFDD) is important for bridge condition assessment. However, it is challenging to monitor the FFDD with high accuracy due to limited sensors and environment variation. This paper proposes a FFDD reconstruction method for bridge based on modal learning. Firstly, the transfer function of dynamic strain response of finite points (SRFP) and FFDD are derived based on the beam bending theory and modal superposition method. Then iterative particle swarm optimization (IPSO) is employed to facilitate self-learning of mode shape with the ability of adapting environment variation. Subsequently, the procedure for reconstructing bridge FFDD by utilizing SRFP and the learned transfer function is provided. Finally, the effectiveness of the proposed method is verified by numerical and experimental examples of bridge under random load, impact load, and moving load excitation, and effects of sensor placement, road roughness, and measurement noise on the reconstruction accuracy are systematically investigated. The results indicate that the proposed method can accurately reconstruct the FFDD in the presence of environment variation, road roughness, and measurement noise at the cost of limited sensors.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.