Spatial–temporal variation of daily precipitation in different levels over mainland China during 1960–2019

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Kexin Zhang, Tiangui Wang, Li Zhao, Jiaoting Peng, Yan Ji
{"title":"Spatial–temporal variation of daily precipitation in different levels over mainland China during 1960–2019","authors":"Kexin Zhang,&nbsp;Tiangui Wang,&nbsp;Li Zhao,&nbsp;Jiaoting Peng,&nbsp;Yan Ji","doi":"10.1002/met.70025","DOIUrl":null,"url":null,"abstract":"<p>Precipitation, essential for the water cycle and key to surface runoff and groundwater, causes floods and droughts when unevenly distributed. Understanding the variations in precipitation across China is vital for managing water resources and preventing weather-related disasters. In this study, we analyzed the spatial–temporal variations in rainfall amounts and the number of rainy days across different levels in China using daily precipitation data during 1960–2019. We found a nonsignificant increase in annual total precipitation (ATP), but a significant decline in the number of days with ATP during this period. This shift suggests that precipitation is becoming more concentrated in fewer days, potentially due to an increase in the frequency of heavy rain (25 ≤ <i>p</i> &lt; 50 mm/day, L<sub>3</sub>), rainstorm (50 ≤ <i>p</i> &lt; 100 mm/day, L<sub>4</sub>), and heavy rainstorm (<i>p</i> &gt; 100 mm/day, L<sub>5</sub>). The amount and frequency of precipitation in light rain (0.1 ≤ <i>p</i> &lt; 10 mm/day, L<sub>1</sub>) and moderate rain (10 ≤ <i>p</i> &lt; 25 mm/day, L<sub>2</sub>) exhibited a decreasing trend during this period, whereas the patterns for L<sub>3</sub>, L<sub>4</sub>, and L<sub>5</sub> demonstrated an increasing trend. Notably, the decrease in the number of days with L<sub>1</sub> and L<sub>2</sub> precipitation was relatively minor compared with the substantial increase in the number of days experiencing L<sub>3</sub>, L<sub>4</sub>, and L<sub>5</sub> precipitation. Despite L<sub>1</sub> precipitation making up only 24.9% of China's ATP, it accounts for 78.6% of total precipitation days. This underscores the important role played by L<sub>1</sub> precipitation events in determining the overall frequency of precipitation occurrences in China. Significant regional disparities are observed in both precipitation amounts and the number of precipitation days across different precipitation levels. Furthermore, large-scale climate indices have consistently affected China's precipitation patterns since 1960, impacting not just the current year but possibly extending into the subsequent year.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70025","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precipitation, essential for the water cycle and key to surface runoff and groundwater, causes floods and droughts when unevenly distributed. Understanding the variations in precipitation across China is vital for managing water resources and preventing weather-related disasters. In this study, we analyzed the spatial–temporal variations in rainfall amounts and the number of rainy days across different levels in China using daily precipitation data during 1960–2019. We found a nonsignificant increase in annual total precipitation (ATP), but a significant decline in the number of days with ATP during this period. This shift suggests that precipitation is becoming more concentrated in fewer days, potentially due to an increase in the frequency of heavy rain (25 ≤ p < 50 mm/day, L3), rainstorm (50 ≤ p < 100 mm/day, L4), and heavy rainstorm (p > 100 mm/day, L5). The amount and frequency of precipitation in light rain (0.1 ≤ p < 10 mm/day, L1) and moderate rain (10 ≤ p < 25 mm/day, L2) exhibited a decreasing trend during this period, whereas the patterns for L3, L4, and L5 demonstrated an increasing trend. Notably, the decrease in the number of days with L1 and L2 precipitation was relatively minor compared with the substantial increase in the number of days experiencing L3, L4, and L5 precipitation. Despite L1 precipitation making up only 24.9% of China's ATP, it accounts for 78.6% of total precipitation days. This underscores the important role played by L1 precipitation events in determining the overall frequency of precipitation occurrences in China. Significant regional disparities are observed in both precipitation amounts and the number of precipitation days across different precipitation levels. Furthermore, large-scale climate indices have consistently affected China's precipitation patterns since 1960, impacting not just the current year but possibly extending into the subsequent year.

Abstract Image

1960—2019年中国大陆不同水平日降水的时空变化特征
降水对水循环至关重要,对地表径流和地下水至关重要,如果分布不均,就会导致洪水和干旱。了解中国各地的降水变化对于管理水资源和预防与天气有关的灾害至关重要。利用1960—2019年的日降水资料,分析了中国不同水平降水量和阴雨日数的时空变化特征。在此期间,年总降水量(ATP)增加不显著,但ATP日数显著减少。这一转变表明,降水越来越集中在更少的天,可能是由于暴雨(25≤p <; 50毫米/天,L3)、暴雨(50≤p <; 100毫米/天,L4)和暴雨(p <; 100毫米/天,L5)的频率增加。小雨(0.1≤p < 10 mm/d, L1)和中雨(10≤p < 25 mm/d, L2)的降水数量和频率在此期间呈减少趋势,L3、L4和L5的降水数量和频率呈增加趋势。值得注意的是,与L3、L4和L5降水日数的大幅增加相比,L1和L2降水日数的减少相对较小。尽管L1降水仅占中国总降水量的24.9%,但却占总降水日数的78.6%。这强调了L1降水事件在确定中国降水发生总体频率方面的重要作用。不同降水水平的降水量和降水日数均存在显著的区域差异。此外,自1960年以来,大尺度气候指数持续影响中国的降水模式,不仅影响当年,而且可能延伸到次年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信