{"title":"A Multi-Model Approach for Attention Prediction in Gaming Environments for Autistic Children","authors":"P. Valarmathi, A. Packialatha","doi":"10.1002/cav.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Autism spectrum disorder (ASD) is a neurological condition that affects an individual's mental development. This research work implements a multimodality input-based virtual reality (VR)-enabled attention prediction approach in gaming for children with autism. Initially, the multimodal inputs such as face image, electroencephalogram (EEG) signal, and data are individually processed by both the preprocessing and feature extraction procedures. Subsequently, a hybrid classification model with classifiers such as improved deep convolutional neural network (IDCNN) and long short term memory (LSTM) is utilized in expression detection by concatenating the resultant features obtained from the feature extraction procedure. Here, the conventional deep convolutional neural network (DCNN) approach is improved by a novel block-knowledge-based processing with a proposed sine-hinge loss function. Finally, an improved weighted mutual information process is employed in attention prediction. Moreover, this proposed attention prediction model is analyzed by simulation and experimental analyses. The effectiveness of the proposed model is significantly proved by the experimental results obtained from various analyses.</p>\n </div>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.70010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a neurological condition that affects an individual's mental development. This research work implements a multimodality input-based virtual reality (VR)-enabled attention prediction approach in gaming for children with autism. Initially, the multimodal inputs such as face image, electroencephalogram (EEG) signal, and data are individually processed by both the preprocessing and feature extraction procedures. Subsequently, a hybrid classification model with classifiers such as improved deep convolutional neural network (IDCNN) and long short term memory (LSTM) is utilized in expression detection by concatenating the resultant features obtained from the feature extraction procedure. Here, the conventional deep convolutional neural network (DCNN) approach is improved by a novel block-knowledge-based processing with a proposed sine-hinge loss function. Finally, an improved weighted mutual information process is employed in attention prediction. Moreover, this proposed attention prediction model is analyzed by simulation and experimental analyses. The effectiveness of the proposed model is significantly proved by the experimental results obtained from various analyses.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.