Calibrating Satellite Maps With Field Data for Improved Predictions of Forest Biomass

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2024-11-28 DOI:10.1002/env.2892
Paul B. May, Andrew O. Finley
{"title":"Calibrating Satellite Maps With Field Data for Improved Predictions of Forest Biomass","authors":"Paul B. May,&nbsp;Andrew O. Finley","doi":"10.1002/env.2892","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Spatially explicit quantification of forest biomass is important for forest-health monitoring and carbon accounting. Direct field measurements of biomass are laborious and expensive, typically limiting their spatial and temporal sampling density and therefore the precision and resolution of the resulting inference. Satellites can provide biomass predictions at a far greater density, but these predictions are often biased relative to field measurements and exhibit heterogeneous errors. We developed and implemented a coregionalization model between sparse field measurements and a predictive satellite map to deliver improved predictions of biomass density at a 1 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>km</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{km}}^2 $$</annotation>\n </semantics></math> resolution throughout the Pacific states of California, Oregon and Washington. The model accounts for zero-inflation in the field measurements and the heterogeneous errors in the satellite predictions. A stochastic partial differential equation approach to spatial modeling is applied to handle the magnitude of the satellite data. The spatial detail rendered by the model is much finer than would be possible with the field measurements alone, and the model provides substantial noise-filtering and bias-correction to the satellite map.</p>\n </div>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2892","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially explicit quantification of forest biomass is important for forest-health monitoring and carbon accounting. Direct field measurements of biomass are laborious and expensive, typically limiting their spatial and temporal sampling density and therefore the precision and resolution of the resulting inference. Satellites can provide biomass predictions at a far greater density, but these predictions are often biased relative to field measurements and exhibit heterogeneous errors. We developed and implemented a coregionalization model between sparse field measurements and a predictive satellite map to deliver improved predictions of biomass density at a 1  km 2 $$ {\mathrm{km}}^2 $$ resolution throughout the Pacific states of California, Oregon and Washington. The model accounts for zero-inflation in the field measurements and the heterogeneous errors in the satellite predictions. A stochastic partial differential equation approach to spatial modeling is applied to handle the magnitude of the satellite data. The spatial detail rendered by the model is much finer than would be possible with the field measurements alone, and the model provides substantial noise-filtering and bias-correction to the satellite map.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信