{"title":"White Dwarf Stars in the Big Data Era","authors":"Maria Camisassa","doi":"10.1002/asna.20240118","DOIUrl":null,"url":null,"abstract":"<p>White dwarf stars are the most common endpoint of stellar evolution. Therefore, these old, numerous and compact objects provide valuable information on the late stages of stellar evolution, the physics of dense plasma and the structure and evolution of our Galaxy. The ESA <i>Gaia</i> space mission has revolutionized this research field, providing parallaxes and multi-band photometry for nearly 360,000 white dwarfs. Furthermore, this data, combined with spectroscopical and spectropolarimetric observations, have provided new information on their chemical abundances and magnetic fields. This large data set has raised new questions on the nature of white dwarfs, boosting our theoretical efforts for understanding the physics that governs their evolution and for improving the statistical analysis of their collective properties. In this article, I summarize the current state of our understanding of the collective properties of white dwarfs, based of detailed theoretical models and population synthesis studies.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.20240118","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240118","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
White dwarf stars are the most common endpoint of stellar evolution. Therefore, these old, numerous and compact objects provide valuable information on the late stages of stellar evolution, the physics of dense plasma and the structure and evolution of our Galaxy. The ESA Gaia space mission has revolutionized this research field, providing parallaxes and multi-band photometry for nearly 360,000 white dwarfs. Furthermore, this data, combined with spectroscopical and spectropolarimetric observations, have provided new information on their chemical abundances and magnetic fields. This large data set has raised new questions on the nature of white dwarfs, boosting our theoretical efforts for understanding the physics that governs their evolution and for improving the statistical analysis of their collective properties. In this article, I summarize the current state of our understanding of the collective properties of white dwarfs, based of detailed theoretical models and population synthesis studies.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.