Isotherm, kinetic, and thermodynamic studies of adsorption of copper (II) and nickel (II) ions using low-cost treated orange peel from aqueous solutions

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL
Mutlu Canpolat, Yalçın Altunkaynak
{"title":"Isotherm, kinetic, and thermodynamic studies of adsorption of copper (II) and nickel (II) ions using low-cost treated orange peel from aqueous solutions","authors":"Mutlu Canpolat,&nbsp;Yalçın Altunkaynak","doi":"10.1002/ep.14509","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study was to utilize processed orange peel waste (TOP) as an adsorbent to remove Cu(II) and Ni(II) ions from aqueous solutions. As a result of systematic experiments to determine the optimal conditions, it was determined that the most suitable conditions for the effective removal of Cu(II) ions were 400 mg/L initial concentration, 100 min contact time, 0.2 g adsorbent dosage, and a solution pH of 5.92. Similarly, the optimal conditions for the removal of Ni(II) ions were determined by systematic experiments to be 300 mg/L initial concentration, 0.2 g adsorbent dosage, 100 min contact time, and a solution pH of 6.19. The systematic experiments also included further investigation of the surface properties of TOP, and promising results were obtained by tests at three different temperatures (298, 308, and 318 K). The adsorption capacities for Cu(II), Ni(II), and Ni(II) were determined as 72.99, 75.18, and 76.33 mg/g, 42.55, 44.44, and 46.29 mg/g, respectively. Further analysis of the adsorption kinetics revealed that the pseudo-second-order model accurately represented the experimental data for both ions. Thermodynamic investigations provided strong evidence that the adsorption process of these noble metal ions on TOP is endothermic and spontaneous. The results of this study emphasize that TOP, with its low cost, easy-to-use nature, and high adsorption capacity, can be considered a long-term solution for environmental remediation and water treatment in sustainable engineering applications.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14509","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to utilize processed orange peel waste (TOP) as an adsorbent to remove Cu(II) and Ni(II) ions from aqueous solutions. As a result of systematic experiments to determine the optimal conditions, it was determined that the most suitable conditions for the effective removal of Cu(II) ions were 400 mg/L initial concentration, 100 min contact time, 0.2 g adsorbent dosage, and a solution pH of 5.92. Similarly, the optimal conditions for the removal of Ni(II) ions were determined by systematic experiments to be 300 mg/L initial concentration, 0.2 g adsorbent dosage, 100 min contact time, and a solution pH of 6.19. The systematic experiments also included further investigation of the surface properties of TOP, and promising results were obtained by tests at three different temperatures (298, 308, and 318 K). The adsorption capacities for Cu(II), Ni(II), and Ni(II) were determined as 72.99, 75.18, and 76.33 mg/g, 42.55, 44.44, and 46.29 mg/g, respectively. Further analysis of the adsorption kinetics revealed that the pseudo-second-order model accurately represented the experimental data for both ions. Thermodynamic investigations provided strong evidence that the adsorption process of these noble metal ions on TOP is endothermic and spontaneous. The results of this study emphasize that TOP, with its low cost, easy-to-use nature, and high adsorption capacity, can be considered a long-term solution for environmental remediation and water treatment in sustainable engineering applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Progress & Sustainable Energy
Environmental Progress & Sustainable Energy 环境科学-工程:化工
CiteScore
5.00
自引率
3.60%
发文量
231
审稿时长
4.3 months
期刊介绍: Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信