DFT Insights Into Non-Catalytic Aminolysis of Polycarbonates

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Alexander Y. Samuilov, Amran Abdullah Ghilan Ali, Yakov D. Samuilov
{"title":"DFT Insights Into Non-Catalytic Aminolysis of Polycarbonates","authors":"Alexander Y. Samuilov,&nbsp;Amran Abdullah Ghilan Ali,&nbsp;Yakov D. Samuilov","doi":"10.1002/poc.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The problem of environmental pollution by plastic is becoming more and more obvious. In this study, the non-catalytic reaction of diphenyl carbonate with methylamine as a model reaction for the depolymerization of polycarbonate was studied at the B3LYP/6-31++G(d,p) and M062X/6-31++G(d,p) levels. The reaction can proceed by the nucleophilic substitution and by the “addition–elimination” pathways. Calculations at the B3LYP/6-31++G(d,p) level indicate that the reaction of diphenyl carbonate with methylamine monomer leading to the formation of N-methyl-O-phenylcarbamate via the nucleophilic substitution pathway at 298 K is characterized by activation and reaction free energies equal to 174.0 and −57.1 kJ·mol<sup>−1</sup>. The same reaction with methylamine dimer is characterized by activation and reaction free energies equal to 147.1 and −77.7 kJ·mol<sup>−1</sup>, respectively. Thermodynamic and kinetic preference is also observed in the reaction of N-methyl-O-phenylcarbamate with the monomer and dimer of methylamine. Reactions with the formation of tetrahedral intermediates are unlikely. Their formation is endothermic and occurs with a decrease in entropy. This leads to small values of equilibrium constants. The equilibrium constant of the reaction of diphenyl carbonate with methylamine monomer to form a tetrahedral intermediate is 1.64·10<sup>−16</sup> at 298 K and 1.20·10<sup>−14</sup> at 423 K. The same trends are observed in the reactions of N-methyl-O-phenylcarbamate. The reactions of diphenyl carbonate, N-methyl-O-phenylcarbamate with methylamine dimer via the “addition–elimination” pathway are also characterized by small values of equilibrium constants. In all cases, interactions involving the methylamine dimer are more favorable than reactions involving the methylamine monomer.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.70001","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of environmental pollution by plastic is becoming more and more obvious. In this study, the non-catalytic reaction of diphenyl carbonate with methylamine as a model reaction for the depolymerization of polycarbonate was studied at the B3LYP/6-31++G(d,p) and M062X/6-31++G(d,p) levels. The reaction can proceed by the nucleophilic substitution and by the “addition–elimination” pathways. Calculations at the B3LYP/6-31++G(d,p) level indicate that the reaction of diphenyl carbonate with methylamine monomer leading to the formation of N-methyl-O-phenylcarbamate via the nucleophilic substitution pathway at 298 K is characterized by activation and reaction free energies equal to 174.0 and −57.1 kJ·mol−1. The same reaction with methylamine dimer is characterized by activation and reaction free energies equal to 147.1 and −77.7 kJ·mol−1, respectively. Thermodynamic and kinetic preference is also observed in the reaction of N-methyl-O-phenylcarbamate with the monomer and dimer of methylamine. Reactions with the formation of tetrahedral intermediates are unlikely. Their formation is endothermic and occurs with a decrease in entropy. This leads to small values of equilibrium constants. The equilibrium constant of the reaction of diphenyl carbonate with methylamine monomer to form a tetrahedral intermediate is 1.64·10−16 at 298 K and 1.20·10−14 at 423 K. The same trends are observed in the reactions of N-methyl-O-phenylcarbamate. The reactions of diphenyl carbonate, N-methyl-O-phenylcarbamate with methylamine dimer via the “addition–elimination” pathway are also characterized by small values of equilibrium constants. In all cases, interactions involving the methylamine dimer are more favorable than reactions involving the methylamine monomer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信