Fairness amidst non-IID graph data: A literature review

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2025-01-28 DOI:10.1002/aaai.12212
Wenbin Zhang, Shuigeng Zhou, Toby Walsh, Jeremy C. Weiss
{"title":"Fairness amidst non-IID graph data: A literature review","authors":"Wenbin Zhang,&nbsp;Shuigeng Zhou,&nbsp;Toby Walsh,&nbsp;Jeremy C. Weiss","doi":"10.1002/aaai.12212","DOIUrl":null,"url":null,"abstract":"<p>The growing importance of understanding and addressing algorithmic bias in artificial intelligence (AI) has led to a surge in research on AI fairness, which often assumes that the underlying data are independent and identically distributed (IID). However, real-world data frequently exist in non-IID graph structures that capture connections among individual units. To effectively mitigate bias in AI systems, it is essential to bridge the gap between traditional fairness literature, designed for IID data, and the prevalence of non-IID graph data. This survey reviews recent advancements in fairness amidst non-IID graph data, including the newly introduced fair graph generation and the commonly studied fair graph classification. In addition, available datasets and evaluation metrics for future research are identified, the limitations of existing work are highlighted, and promising future directions are proposed.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"46 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12212","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12212","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The growing importance of understanding and addressing algorithmic bias in artificial intelligence (AI) has led to a surge in research on AI fairness, which often assumes that the underlying data are independent and identically distributed (IID). However, real-world data frequently exist in non-IID graph structures that capture connections among individual units. To effectively mitigate bias in AI systems, it is essential to bridge the gap between traditional fairness literature, designed for IID data, and the prevalence of non-IID graph data. This survey reviews recent advancements in fairness amidst non-IID graph data, including the newly introduced fair graph generation and the commonly studied fair graph classification. In addition, available datasets and evaluation metrics for future research are identified, the limitations of existing work are highlighted, and promising future directions are proposed.

Abstract Image

非iid图形数据中的公平性:文献综述
理解和解决人工智能(AI)中算法偏见的重要性日益增加,这导致了人工智能公平性研究的激增,这些研究通常假设底层数据是独立和同分布的(IID)。然而,真实世界的数据经常存在于非iid图结构中,这些结构捕获了各个单元之间的连接。为了有效减轻人工智能系统中的偏见,有必要弥合为IID数据设计的传统公平文献与非IID图形数据的流行之间的差距。本调查回顾了在非iid图数据中公平性的最新进展,包括新引入的公平图生成和通常研究的公平图分类。此外,确定了未来研究的可用数据集和评估指标,强调了现有工作的局限性,并提出了有希望的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信