Spatiotemporal Variability of Saturn's Zonal Winds Observed by Cassini

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Xinyue Wang, Liming Li, Larry Guan, Xun Jiang, Patrick M. Fry, Ulyana A. Dyudina, Leigh N. Fletcher, Enrique García-Melendo, Ricardo Hueso, Raúl Morales-Juberías, Agustin Sánchez-Lavega, Amy A. Simon
{"title":"Spatiotemporal Variability of Saturn's Zonal Winds Observed by Cassini","authors":"Xinyue Wang,&nbsp;Liming Li,&nbsp;Larry Guan,&nbsp;Xun Jiang,&nbsp;Patrick M. Fry,&nbsp;Ulyana A. Dyudina,&nbsp;Leigh N. Fletcher,&nbsp;Enrique García-Melendo,&nbsp;Ricardo Hueso,&nbsp;Raúl Morales-Juberías,&nbsp;Agustin Sánchez-Lavega,&nbsp;Amy A. Simon","doi":"10.1029/2024JE008515","DOIUrl":null,"url":null,"abstract":"<p>The strong zonal winds on giant planets are among the most interesting phenomena in our solar system. Observations recorded by the Composite Infrared Spectrometer (CIRS), the Imaging Science Subsystem (ISS), and the Visual and Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft are utilized to investigate spatiotemporal variations in Saturn's zonal winds. A general thermal wind equation works for investigating the vertical structure of zonal winds at all latitudes, but it has integration gaps near the equator caused by the cylindrical integration path. Here, we develop an algorithm to address this limitation, which is validated by the observed zonal winds. The algorithm is combined with the CIRS-retrieved temperature and the ISS-measured winds to generate a complete picture of the vertical structure of Saturn's zonal winds for the upper troposphere (i.e., 50–500 mbar), which suggests that the equatorial zonal winds have complicated vertical structures. The zonal winds from 10°S to 10°N initially decrease with altitude and then increase. Additionally, the intense narrow equatorial jet between 3°S and 3°N widens with altitude. The zonal winds are further used to examine the atmospheric stability, which implies some unstable regions. Finally, the analysis of Cassini multi-instrument observations reveals different temporal behaviors of zonal winds in the vertical direction, which suggests that seasonally varying solar flux is one of the drivers of temporal variations in zonal winds.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008515","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The strong zonal winds on giant planets are among the most interesting phenomena in our solar system. Observations recorded by the Composite Infrared Spectrometer (CIRS), the Imaging Science Subsystem (ISS), and the Visual and Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft are utilized to investigate spatiotemporal variations in Saturn's zonal winds. A general thermal wind equation works for investigating the vertical structure of zonal winds at all latitudes, but it has integration gaps near the equator caused by the cylindrical integration path. Here, we develop an algorithm to address this limitation, which is validated by the observed zonal winds. The algorithm is combined with the CIRS-retrieved temperature and the ISS-measured winds to generate a complete picture of the vertical structure of Saturn's zonal winds for the upper troposphere (i.e., 50–500 mbar), which suggests that the equatorial zonal winds have complicated vertical structures. The zonal winds from 10°S to 10°N initially decrease with altitude and then increase. Additionally, the intense narrow equatorial jet between 3°S and 3°N widens with altitude. The zonal winds are further used to examine the atmospheric stability, which implies some unstable regions. Finally, the analysis of Cassini multi-instrument observations reveals different temporal behaviors of zonal winds in the vertical direction, which suggests that seasonally varying solar flux is one of the drivers of temporal variations in zonal winds.

卡西尼号观测到的土星纬向风的时空变化
巨大行星上强烈的纬向风是太阳系中最有趣的现象之一。利用卡西尼号航天器上的复合红外光谱仪(CIRS)、成像科学子系统(ISS)和视红外测绘光谱仪(VIMS)记录的观测数据来研究土星纬向风的时空变化。一般的热风方程适用于研究纬向风在各纬度的垂直结构,但它在赤道附近由于圆柱形的积分路径而存在积分间隙。在这里,我们开发了一种算法来解决这一限制,并通过观察到的纬向风来验证。该算法结合cirs检索的温度和iss测量的风,生成了对流层上层(即50-500 mbar)土星纬向风垂直结构的完整图像,这表明赤道纬向风具有复杂的垂直结构。10°S ~ 10°N纬向风随海拔高度先减小后增大。此外,在3°S - 3°N之间强烈的窄赤道急流随着高度的增加而变宽。纬向风进一步用来检验大气稳定性,这意味着一些不稳定区域。最后,通过对卡西尼多仪器观测数据的分析,揭示了纬向风在垂直方向上的不同时间特征,表明季节变化的太阳通量是纬向风时间变化的驱动因素之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信