Hierarchical structure Fe@CNFs@Co/C elastic aerogels with intelligent electromagnetic wave absorption

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-10-26 DOI:10.1002/inf2.12630
Hongwei Zhou, Ying Lin, Yongzhen Ma, Luyao Han, Zhixin Cai, Yan Cheng, Qibin Yuan, Wenhuan Huang, Haibo Yang, Renchao Che
{"title":"Hierarchical structure Fe@CNFs@Co/C elastic aerogels with intelligent electromagnetic wave absorption","authors":"Hongwei Zhou,&nbsp;Ying Lin,&nbsp;Yongzhen Ma,&nbsp;Luyao Han,&nbsp;Zhixin Cai,&nbsp;Yan Cheng,&nbsp;Qibin Yuan,&nbsp;Wenhuan Huang,&nbsp;Haibo Yang,&nbsp;Renchao Che","doi":"10.1002/inf2.12630","DOIUrl":null,"url":null,"abstract":"<p>Developing intelligent electromagnetic wave (EMW) absorption materials with real-time response-ability is of great significance in complex application environments. Herein, highly compressible Fe@CNFs@Co/C elastic aerogels were assembled through the electrospinning method, achieving EMW absorption through pressure changes. By varying the pressure, the effective absorption bandwidth (EAB) of Fe@CNFs@Co/C elastic aerogels shows continuous changes from low frequency to high frequency. The EAB of Fe@CNFs@Co/C elastic aerogels is 14.4 GHz (3.36–17.76 GHz), which covers 90% of the range of S/C/X/Ku bands. The theoretical simulation indicates that the external pressure prompts a reduction in the spacing between the fiber layers in the aerogels and facilitates the formation of a 3D conductive network with enhanced attenuation ability of EMW. The uniform distribution of metal particles and appropriate layer spacing can effectively optimize the impedance matching to achieve the best EMW absorption performance. This work state clearly that the hierarchically assembled elastic aerogels composed of metal–organic frameworks (MOFs) derivatives and carbon fibers are ideal dynamic EMW absorption materials for intelligent EMW response.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 1","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12630","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12630","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing intelligent electromagnetic wave (EMW) absorption materials with real-time response-ability is of great significance in complex application environments. Herein, highly compressible Fe@CNFs@Co/C elastic aerogels were assembled through the electrospinning method, achieving EMW absorption through pressure changes. By varying the pressure, the effective absorption bandwidth (EAB) of Fe@CNFs@Co/C elastic aerogels shows continuous changes from low frequency to high frequency. The EAB of Fe@CNFs@Co/C elastic aerogels is 14.4 GHz (3.36–17.76 GHz), which covers 90% of the range of S/C/X/Ku bands. The theoretical simulation indicates that the external pressure prompts a reduction in the spacing between the fiber layers in the aerogels and facilitates the formation of a 3D conductive network with enhanced attenuation ability of EMW. The uniform distribution of metal particles and appropriate layer spacing can effectively optimize the impedance matching to achieve the best EMW absorption performance. This work state clearly that the hierarchically assembled elastic aerogels composed of metal–organic frameworks (MOFs) derivatives and carbon fibers are ideal dynamic EMW absorption materials for intelligent EMW response.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信