Machine-learning-based integration of tumor microenvironment features predicting immunotherapy response

Kunpeng Luo, Shuqiang Liu, Yunfu Cui, Jinglin Li, Xiuyun Shen, Jincheng Xu, Yanan Jiang
{"title":"Machine-learning-based integration of tumor microenvironment features predicting immunotherapy response","authors":"Kunpeng Luo,&nbsp;Shuqiang Liu,&nbsp;Yunfu Cui,&nbsp;Jinglin Li,&nbsp;Xiuyun Shen,&nbsp;Jincheng Xu,&nbsp;Yanan Jiang","doi":"10.1002/mef2.70009","DOIUrl":null,"url":null,"abstract":"<p>Immunotherapy has revolutionized cancer treatment in recent years, yet non-responsiveness of immunotherapy remains a challenge for cancer treatment. Therefore, the prediction method for potential clinical benefits of patients from immunotherapy is urgently needed. This study aims to develop an effective clinical practice assistance tool to evaluate the potential clinical benefits and therapy responsiveness of patients undergoing immunotherapy. We developed an immunotherapy resistance score (IRS), which performed well compared with conventional immunotherapy response indicators across different immunotherapy cohorts. Tumor microenvironment (TME) analysis showed that both immune and nonimmune features collectively impact immunotherapy responsiveness. Thus, IRS was constructed based on the TME features using machine learning approaches. The clinical application potential of IRS has been demonstrated in our in-house Harbin Medical University (HMU) cohort and an external validation cohort. Furthermore, we analyzed the correlation between IRS and pathways related to cancer therapy targets to explore the application potential of IRS in comprehensive cancer therapy. In conclusion, IRS is a robust tool for predicting patient immunotherapy prognosis, which has great potential to promote precise clinical therapy.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm - Future medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mef2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy has revolutionized cancer treatment in recent years, yet non-responsiveness of immunotherapy remains a challenge for cancer treatment. Therefore, the prediction method for potential clinical benefits of patients from immunotherapy is urgently needed. This study aims to develop an effective clinical practice assistance tool to evaluate the potential clinical benefits and therapy responsiveness of patients undergoing immunotherapy. We developed an immunotherapy resistance score (IRS), which performed well compared with conventional immunotherapy response indicators across different immunotherapy cohorts. Tumor microenvironment (TME) analysis showed that both immune and nonimmune features collectively impact immunotherapy responsiveness. Thus, IRS was constructed based on the TME features using machine learning approaches. The clinical application potential of IRS has been demonstrated in our in-house Harbin Medical University (HMU) cohort and an external validation cohort. Furthermore, we analyzed the correlation between IRS and pathways related to cancer therapy targets to explore the application potential of IRS in comprehensive cancer therapy. In conclusion, IRS is a robust tool for predicting patient immunotherapy prognosis, which has great potential to promote precise clinical therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信