{"title":"Machine-learning-based integration of tumor microenvironment features predicting immunotherapy response","authors":"Kunpeng Luo, Shuqiang Liu, Yunfu Cui, Jinglin Li, Xiuyun Shen, Jincheng Xu, Yanan Jiang","doi":"10.1002/mef2.70009","DOIUrl":null,"url":null,"abstract":"<p>Immunotherapy has revolutionized cancer treatment in recent years, yet non-responsiveness of immunotherapy remains a challenge for cancer treatment. Therefore, the prediction method for potential clinical benefits of patients from immunotherapy is urgently needed. This study aims to develop an effective clinical practice assistance tool to evaluate the potential clinical benefits and therapy responsiveness of patients undergoing immunotherapy. We developed an immunotherapy resistance score (IRS), which performed well compared with conventional immunotherapy response indicators across different immunotherapy cohorts. Tumor microenvironment (TME) analysis showed that both immune and nonimmune features collectively impact immunotherapy responsiveness. Thus, IRS was constructed based on the TME features using machine learning approaches. The clinical application potential of IRS has been demonstrated in our in-house Harbin Medical University (HMU) cohort and an external validation cohort. Furthermore, we analyzed the correlation between IRS and pathways related to cancer therapy targets to explore the application potential of IRS in comprehensive cancer therapy. In conclusion, IRS is a robust tool for predicting patient immunotherapy prognosis, which has great potential to promote precise clinical therapy.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm - Future medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mef2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy has revolutionized cancer treatment in recent years, yet non-responsiveness of immunotherapy remains a challenge for cancer treatment. Therefore, the prediction method for potential clinical benefits of patients from immunotherapy is urgently needed. This study aims to develop an effective clinical practice assistance tool to evaluate the potential clinical benefits and therapy responsiveness of patients undergoing immunotherapy. We developed an immunotherapy resistance score (IRS), which performed well compared with conventional immunotherapy response indicators across different immunotherapy cohorts. Tumor microenvironment (TME) analysis showed that both immune and nonimmune features collectively impact immunotherapy responsiveness. Thus, IRS was constructed based on the TME features using machine learning approaches. The clinical application potential of IRS has been demonstrated in our in-house Harbin Medical University (HMU) cohort and an external validation cohort. Furthermore, we analyzed the correlation between IRS and pathways related to cancer therapy targets to explore the application potential of IRS in comprehensive cancer therapy. In conclusion, IRS is a robust tool for predicting patient immunotherapy prognosis, which has great potential to promote precise clinical therapy.