Application of Mathematics for Robust Stability and for Robustly Strictly Positive Real on an Uncertain Interval Plant

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Buddhadev Ghosh, Gargi Chakraborty
{"title":"Application of Mathematics for Robust Stability and for Robustly Strictly Positive Real on an Uncertain Interval Plant","authors":"Buddhadev Ghosh,&nbsp;Gargi Chakraborty","doi":"10.1002/rnc.7732","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, we present a robust control problem wherein <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>l</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>U</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>l</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mi>l</mi>\n <mo>∈</mo>\n <mi>L</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>∈</mo>\n <mi>M</mi>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\mathcal{P}=\\left\\{P\\left(s,l,m\\right)=U\\left(s,l\\right)/V\\left(s,m\\right):l\\in L,m\\in M\\right\\} $$</annotation>\n </semantics></math> represents a family of interval plants. For this particular problem, we introduce four Kharitonov polynomials uniquely by minimizing and maximizing the concept of multilinear functions with uncertain parameters <span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n </mrow>\n <annotation>$$ l $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math> for the plant <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>Re</mi>\n <mfrac>\n <mrow>\n <mi>U</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mrow>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n <mo>=</mo>\n <mi>ReU</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>V</mi>\n <mo>*</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ P\\left( j\\omega, l,m\\right)=\\mathit{\\operatorname{Re}}\\frac{U\\left( j\\omega, l\\right)}{V\\left( j\\omega, m\\right)}= ReU\\left( j\\omega, l\\right){V}^{\\ast}\\left( j\\omega, m\\right) $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>Im</mi>\n <mfrac>\n <mrow>\n <mi>U</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mrow>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n <mo>=</mo>\n <mi>ImU</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>V</mi>\n <mo>*</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ P\\left( j\\omega, l,m\\right)=\\mathit{\\operatorname{Im}}\\frac{U\\left( j\\omega, l\\right)}{V\\left( j\\omega, m\\right)}= ImU\\left( j\\omega, l\\right){V}^{\\ast}\\left( j\\omega, m\\right) $$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>V</mi>\n <mo>*</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ {V}^{\\ast}\\left( j\\omega, m\\right) $$</annotation>\n </semantics></math> denotes the conjugate of <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ V\\left( j\\omega, m\\right) $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>=</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n </mrow>\n <annotation>$$ s= j\\omega $$</annotation>\n </semantics></math>, with <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ \\omega $$</annotation>\n </semantics></math> representing frequency within a specified domain. This technique yields a Kharitonov rectangle or box <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>L</mi>\n <mo>,</mo>\n <mi>M</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ P\\left( j\\omega, L,M\\right) $$</annotation>\n </semantics></math> whose every four vertices are represented by four unique Kharitonov polynomials <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ P\\left( j\\omega, l,m\\right) $$</annotation>\n </semantics></math>, each is denoted by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>k</mi>\n <mo>˜</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <msub>\n <mover>\n <mi>k</mi>\n <mo>˜</mo>\n </mover>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <msub>\n <mover>\n <mi>k</mi>\n <mo>˜</mo>\n </mover>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ {\\tilde{k}}_1(s),{\\tilde{k}}_2(s),{\\tilde{k}}_3(s) $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>k</mi>\n <mo>˜</mo>\n </mover>\n <mn>4</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ {\\tilde{k}}_4(s) $$</annotation>\n </semantics></math> and this rectangle characterizes both robust stability and robustly strictly positive real (SPR) for the family of interval plants (<span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation>$$ \\mathcal{P} $$</annotation>\n </semantics></math>). Thus, the introduction of this Kharitonov rectangle stands as a novel innovation in this article. Our contribution encompasses two key aspects. Initially, we demonstrate the stability of the four unique Kharitonov polynomials employing Hurwitz stability criteria, followed by the utilization of Kharitonov's theorem to ensure robust stability of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation>$$ \\mathcal{P} $$</annotation>\n </semantics></math>. Subsequently, to establish robustly SPR of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation>$$ \\mathcal{P} $$</annotation>\n </semantics></math>, we analyze the SPR of each interval plant <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>l</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ P\\left(s,l,m\\right) $$</annotation>\n </semantics></math> concerning the stability of <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>l</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ U\\left(s,l\\right) $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ V\\left(s,m\\right) $$</annotation>\n </semantics></math>, adhering to the condition <span></span><math>\n <semantics>\n <mrow>\n <munder>\n <mi>min</mi>\n <mrow>\n <mi>l</mi>\n <mo>∈</mo>\n <mi>L</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>∈</mo>\n <mi>M</mi>\n </mrow>\n </munder>\n <mi>Re</mi>\n <mspace></mspace>\n <mi>U</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>l</mi>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>V</mi>\n <mo>*</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>j</mi>\n <mi>ω</mi>\n </mrow>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\underset{l\\in L,m\\in M}{\\min}\\mathit{\\operatorname{Re}}\\ U\\left( j\\omega, l\\right){V}^{\\ast}\\left( j\\omega, m\\right)&gt;0 $$</annotation>\n </semantics></math>. Additionally, we provide a detailed illustrative example. Furthermore, we demonstrate the motion of the Kharitonov rectangle and the robust stability test through simulation.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 4","pages":"1463-1472"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7732","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a robust control problem wherein P = { P ( s , l , m ) = U ( s , l ) / V ( s , m ) : l L , m M } $$ \mathcal{P}=\left\{P\left(s,l,m\right)=U\left(s,l\right)/V\left(s,m\right):l\in L,m\in M\right\} $$ represents a family of interval plants. For this particular problem, we introduce four Kharitonov polynomials uniquely by minimizing and maximizing the concept of multilinear functions with uncertain parameters l $$ l $$ and m $$ m $$ for the plant P ( j ω , l , m ) = Re U ( j ω , l ) V ( j ω , m ) = ReU ( j ω , l ) V * ( j ω , m ) $$ P\left( j\omega, l,m\right)=\mathit{\operatorname{Re}}\frac{U\left( j\omega, l\right)}{V\left( j\omega, m\right)}= ReU\left( j\omega, l\right){V}^{\ast}\left( j\omega, m\right) $$ and P ( j ω , l , m ) = Im U ( j ω , l ) V ( j ω , m ) = ImU ( j ω , l ) V * ( j ω , m ) $$ P\left( j\omega, l,m\right)=\mathit{\operatorname{Im}}\frac{U\left( j\omega, l\right)}{V\left( j\omega, m\right)}= ImU\left( j\omega, l\right){V}^{\ast}\left( j\omega, m\right) $$ where V * ( j ω , m ) $$ {V}^{\ast}\left( j\omega, m\right) $$ denotes the conjugate of V ( j ω , m ) $$ V\left( j\omega, m\right) $$ and s = j ω $$ s= j\omega $$ , with ω $$ \omega $$ representing frequency within a specified domain. This technique yields a Kharitonov rectangle or box P ( j ω , L , M ) $$ P\left( j\omega, L,M\right) $$ whose every four vertices are represented by four unique Kharitonov polynomials P ( j ω , l , m ) $$ P\left( j\omega, l,m\right) $$ , each is denoted by k ˜ 1 ( s ) , k ˜ 2 ( s ) , k ˜ 3 ( s ) $$ {\tilde{k}}_1(s),{\tilde{k}}_2(s),{\tilde{k}}_3(s) $$ and k ˜ 4 ( s ) $$ {\tilde{k}}_4(s) $$ and this rectangle characterizes both robust stability and robustly strictly positive real (SPR) for the family of interval plants ( P $$ \mathcal{P} $$ ). Thus, the introduction of this Kharitonov rectangle stands as a novel innovation in this article. Our contribution encompasses two key aspects. Initially, we demonstrate the stability of the four unique Kharitonov polynomials employing Hurwitz stability criteria, followed by the utilization of Kharitonov's theorem to ensure robust stability of P $$ \mathcal{P} $$ . Subsequently, to establish robustly SPR of P $$ \mathcal{P} $$ , we analyze the SPR of each interval plant P ( s , l , m ) $$ P\left(s,l,m\right) $$ concerning the stability of U ( s , l ) $$ U\left(s,l\right) $$ and V ( s , m ) $$ V\left(s,m\right) $$ , adhering to the condition min l L , m M Re U ( j ω , l ) V * ( j ω , m ) > 0 $$ \underset{l\in L,m\in M}{\min}\mathit{\operatorname{Re}}\ U\left( j\omega, l\right){V}^{\ast}\left( j\omega, m\right)>0 $$ . Additionally, we provide a detailed illustrative example. Furthermore, we demonstrate the motion of the Kharitonov rectangle and the robust stability test through simulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信