{"title":"Solvent-Assisted Prototopic Switching of Norharmane Along Hydrogen-Bonded Network: Assessing the Precise Length of Network","authors":"Suvendu Paul, Nilanjan Dey","doi":"10.1002/poc.4678","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, the proton transfer dynamics along a stable norharmane•(H<sub>2</sub>O)<sub>n</sub> (<i>n</i> = 2–4) hydrogen-bonded cluster on conversion from the neutral to cationic form of norharmane (<b>NHM</b>) in water medium was demonstrated experimentally and theoretically. The distinct absorption and emission bands of different prototropic forms of <b>NHM</b> are well-known in the literature. Initially, the conversion from neutral to cationic form of <b>NHM</b> on moving from a polar aprotic (acetonitrile) to a polar protic (water) solvent was ensured by steady-state absorption and fluorescence studies. The analysis of IR spectra and steady-state anisotropy data of <b>NHM</b> confirmed the possibility of the formation of a hydrogen-bonded network in the presence of water. The length of the network was explored and assumed by extensive Density Functional Theory (DFT) calculations. Then, by time-dependent density functional theory (TD-DFT), the excited state proton transfer (ESPT) pathway was established interrogating the <b>NHM</b>-water cluster with different numbers of water molecules. The theoretical analysis assured that the <b>NHM</b>•(H<sub>2</sub>O)<sub>2</sub> cluster was incapable of maintaining the stable hydrogen bonding wire in the course of the ESPT mechanism. Rather, <b>NHM</b>•(H<sub>2</sub>O)<sub>3</sub> and <b>NHM</b>•(H<sub>2</sub>O)<sub>4</sub> clusters were simultaneously involved in operating the ESPT mechanism. The <b>NHM</b>•(H<sub>2</sub>O)<sub>4</sub> cluster was more feasible to carry out the proton transfer than the <b>NHM</b>•(H<sub>2</sub>O)<sub>3</sub> cluster. To the best of our knowledge, this was possibly the first theoretical evidence behind the conversion from neutral to cationic form of <b>NHM</b> via the formation of a hydrogen-bonded network.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4678","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the proton transfer dynamics along a stable norharmane•(H2O)n (n = 2–4) hydrogen-bonded cluster on conversion from the neutral to cationic form of norharmane (NHM) in water medium was demonstrated experimentally and theoretically. The distinct absorption and emission bands of different prototropic forms of NHM are well-known in the literature. Initially, the conversion from neutral to cationic form of NHM on moving from a polar aprotic (acetonitrile) to a polar protic (water) solvent was ensured by steady-state absorption and fluorescence studies. The analysis of IR spectra and steady-state anisotropy data of NHM confirmed the possibility of the formation of a hydrogen-bonded network in the presence of water. The length of the network was explored and assumed by extensive Density Functional Theory (DFT) calculations. Then, by time-dependent density functional theory (TD-DFT), the excited state proton transfer (ESPT) pathway was established interrogating the NHM-water cluster with different numbers of water molecules. The theoretical analysis assured that the NHM•(H2O)2 cluster was incapable of maintaining the stable hydrogen bonding wire in the course of the ESPT mechanism. Rather, NHM•(H2O)3 and NHM•(H2O)4 clusters were simultaneously involved in operating the ESPT mechanism. The NHM•(H2O)4 cluster was more feasible to carry out the proton transfer than the NHM•(H2O)3 cluster. To the best of our knowledge, this was possibly the first theoretical evidence behind the conversion from neutral to cationic form of NHM via the formation of a hydrogen-bonded network.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.