{"title":"Advancing damage-free machining of KDP: A comprehensive review","authors":"Shengyao Yang, Liangchi Zhang","doi":"10.1111/jace.20341","DOIUrl":null,"url":null,"abstract":"<p>The series of successful inertial confinement fusion ignitions from December 2022 to December 2023 marked a groundbreaking milestone in humanity's pursuit for a new, inexhaustible source of clean energy. At the core of this ignition system lies the potassium dihydrogen phosphate (KDP) crystals, playing an indispensable role. However, ensuring the reliable, long-term application of KDP components relies heavily on their quality, necessitating finishes that are free from damage or nearly so. Manufacturing KDP components poses significant challenges due to their fragility, unstable microstructure, sensitivity to environmental factors and complex mechanical behavior. To address the quest for damage-free manufacturing, interdisciplinary investigations have been commenced, incorporating theoretical analyses, atomistic simulations, and experimental trials. The success of the ignitions has catalyzed intensified research efforts aimed at achieving damage-free machining of KDP components, drawing significant attention. This review is dedicated to examining existing studies on machining-induced damage mechanisms and exploring potential pathways for achieving damage-free machining of KDP crystals.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20341","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The series of successful inertial confinement fusion ignitions from December 2022 to December 2023 marked a groundbreaking milestone in humanity's pursuit for a new, inexhaustible source of clean energy. At the core of this ignition system lies the potassium dihydrogen phosphate (KDP) crystals, playing an indispensable role. However, ensuring the reliable, long-term application of KDP components relies heavily on their quality, necessitating finishes that are free from damage or nearly so. Manufacturing KDP components poses significant challenges due to their fragility, unstable microstructure, sensitivity to environmental factors and complex mechanical behavior. To address the quest for damage-free manufacturing, interdisciplinary investigations have been commenced, incorporating theoretical analyses, atomistic simulations, and experimental trials. The success of the ignitions has catalyzed intensified research efforts aimed at achieving damage-free machining of KDP components, drawing significant attention. This review is dedicated to examining existing studies on machining-induced damage mechanisms and exploring potential pathways for achieving damage-free machining of KDP crystals.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.