{"title":"A Climate Simulation Dataset From 11 Overriding Experiments for Analysing Cloud and Air–Sea Feedbacks","authors":"Xiao Guo, Biao Feng, Zhiying Zhao, Jian Ma","doi":"10.1002/gdj3.286","DOIUrl":null,"url":null,"abstract":"<p>Under global warming, cloud change and its radiative feedback have often been considered to evolve from thermodynamic processes; however, cloud feedback may also force sea surface temperature to trigger such air–sea interactions. Due to complex cloud physics in air–sea coupling, this contributes to the surface warming pattern formation with significant uncertainty. Here we develop a novel overriding technique for climate projections that substitutes specific variables in control runs to isolate such feedback mechanisms, decoupling thermodynamic, dynamical and radiative responses of the surface ocean to the atmosphere. We apply this to the Community Earth System Model version 2 (CESM2) and perform a series of 150-year simulations with 1% CO<sub>2</sub> increase per year (1pctCO<sub>2</sub>). In real time, the key variables under 1pctCO<sub>2</sub> are replaced with those from the current climate, such as downwelling shortwave radiation, wind speed in latent and sensible heat and wind stress. These experiments provide monthly output of global distributions including surface temperatures, winds and precipitation, with a spatial resolution of 1.9° × 2.5° in latitude and longitude and 32 levels for the atmosphere and of ~1° and 60 layers designated as gx1v7 for the ocean. This open access dataset for partial air–sea coupling under climate change can help understand the tropical and polar warming patterns and quantify the relative contributions of forcing and triggering mechanisms.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.286","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.286","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Under global warming, cloud change and its radiative feedback have often been considered to evolve from thermodynamic processes; however, cloud feedback may also force sea surface temperature to trigger such air–sea interactions. Due to complex cloud physics in air–sea coupling, this contributes to the surface warming pattern formation with significant uncertainty. Here we develop a novel overriding technique for climate projections that substitutes specific variables in control runs to isolate such feedback mechanisms, decoupling thermodynamic, dynamical and radiative responses of the surface ocean to the atmosphere. We apply this to the Community Earth System Model version 2 (CESM2) and perform a series of 150-year simulations with 1% CO2 increase per year (1pctCO2). In real time, the key variables under 1pctCO2 are replaced with those from the current climate, such as downwelling shortwave radiation, wind speed in latent and sensible heat and wind stress. These experiments provide monthly output of global distributions including surface temperatures, winds and precipitation, with a spatial resolution of 1.9° × 2.5° in latitude and longitude and 32 levels for the atmosphere and of ~1° and 60 layers designated as gx1v7 for the ocean. This open access dataset for partial air–sea coupling under climate change can help understand the tropical and polar warming patterns and quantify the relative contributions of forcing and triggering mechanisms.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.