{"title":"Automating Autograding: Large Language Models as Test Suite Generators for Introductory Programming","authors":"Umar Alkafaween, Ibrahim Albluwi, Paul Denny","doi":"10.1111/jcal.13100","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Automatically graded programming assignments provide instant feedback to students and significantly reduce manual grading time for instructors. However, creating comprehensive suites of test cases for programming problems within automatic graders can be time-consuming and complex. The effort needed to define test suites may deter some instructors from creating additional problems or lead to inadequate test coverage, potentially resulting in misleading feedback on student solutions. Such limitations may reduce student access to the well-documented benefits of timely feedback when learning programming.</p>\n </section>\n \n <section>\n \n <h3> Objectives</h3>\n \n <p>We evaluate the effectiveness of using Large Language Models (LLMs), as part of a larger workflow, to automatically generate test suites for CS1-level programming problems.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Each problem's statement and reference solution are provided to GPT-4 to produce a test suite that can be used by an autograder. We evaluate our proposed approach using a sample of 26 problems, and more than 25,000 attempted solutions to those problems, submitted by students in an introductory programming course. We compare the performance of the LLM-generated test suites against the instructor-created test suites for each problem.</p>\n </section>\n \n <section>\n \n <h3> Results and Conclusions</h3>\n \n <p>Our findings reveal that LLM-generated test suites can correctly identify most valid solutions, and for most problems are at least as comprehensive as the instructor test suites. Additionally, the LLM-generated test suites exposed ambiguities in some problem statements, underscoring their potential to improve both autograding and instructional design.</p>\n </section>\n </div>","PeriodicalId":48071,"journal":{"name":"Journal of Computer Assisted Learning","volume":"41 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Learning","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcal.13100","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Automatically graded programming assignments provide instant feedback to students and significantly reduce manual grading time for instructors. However, creating comprehensive suites of test cases for programming problems within automatic graders can be time-consuming and complex. The effort needed to define test suites may deter some instructors from creating additional problems or lead to inadequate test coverage, potentially resulting in misleading feedback on student solutions. Such limitations may reduce student access to the well-documented benefits of timely feedback when learning programming.
Objectives
We evaluate the effectiveness of using Large Language Models (LLMs), as part of a larger workflow, to automatically generate test suites for CS1-level programming problems.
Methods
Each problem's statement and reference solution are provided to GPT-4 to produce a test suite that can be used by an autograder. We evaluate our proposed approach using a sample of 26 problems, and more than 25,000 attempted solutions to those problems, submitted by students in an introductory programming course. We compare the performance of the LLM-generated test suites against the instructor-created test suites for each problem.
Results and Conclusions
Our findings reveal that LLM-generated test suites can correctly identify most valid solutions, and for most problems are at least as comprehensive as the instructor test suites. Additionally, the LLM-generated test suites exposed ambiguities in some problem statements, underscoring their potential to improve both autograding and instructional design.
期刊介绍:
The Journal of Computer Assisted Learning is an international peer-reviewed journal which covers the whole range of uses of information and communication technology to support learning and knowledge exchange. It aims to provide a medium for communication among researchers as well as a channel linking researchers, practitioners, and policy makers. JCAL is also a rich source of material for master and PhD students in areas such as educational psychology, the learning sciences, instructional technology, instructional design, collaborative learning, intelligent learning systems, learning analytics, open, distance and networked learning, and educational evaluation and assessment. This is the case for formal (e.g., schools), non-formal (e.g., workplace learning) and informal learning (e.g., museums and libraries) situations and environments. Volumes often include one Special Issue which these provides readers with a broad and in-depth perspective on a specific topic. First published in 1985, JCAL continues to have the aim of making the outcomes of contemporary research and experience accessible. During this period there have been major technological advances offering new opportunities and approaches in the use of a wide range of technologies to support learning and knowledge transfer more generally. There is currently much emphasis on the use of network functionality and the challenges its appropriate uses pose to teachers/tutors working with students locally and at a distance. JCAL welcomes: -Empirical reports, single studies or programmatic series of studies on the use of computers and information technologies in learning and assessment -Critical and original meta-reviews of literature on the use of computers for learning -Empirical studies on the design and development of innovative technology-based systems for learning -Conceptual articles on issues relating to the Aims and Scope