{"title":"CRN synthesis mechanism of high sinterability MgAlON powder for fast fabrication of highly transparent ceramics","authors":"Xiaotian Yu, Haoran Guo, Yingchun Shan, Yanbin Han, Xiaoguang Han, Jiujun Xu, Jiangtao Li","doi":"10.1111/jace.20325","DOIUrl":null,"url":null,"abstract":"<p>Utilizing γ-Al<sub>2</sub>O<sub>3</sub>, MgO, and black carbon powders as starting materials, single-phase magnesium aluminum oxynitride (MgAlON) powders with excellent sinterability were successfully synthesized by carbothermal reduction and nitridation (CRN) method, and the CRN synthesis mechanism was investigated through analyzing phase assemblage and morphology of the powders during heating. As heating to 1700°C, single-phase MgAlON is obtained, while its O/N ratio can be adjusted by controlling the composition of starting mixture and the CRN process. The MgAlON powders with O/N ratio of 9.52–11.39 (using the mixture with 8.6 wt.% MgO and 5.2 wt.% carbon black, and prepared at 1700°C for 90–150 min or 1720°C for 120 min) exhibit high sinterability. These powders were successfully fast pressureless sintered into ceramics with high transmittance (>80%@3750 nm) at 1880°C for 2.5 h. During the heating process for preparing MgAlON powder, magnesium aluminate spinel (MAS) is first formed at <1500°C, then at 1500–1600°C, along with formation of AlN via CRN and its instantaneous solid solution with MAS, MgAlON is obtained. The phase assemblage and morphology comparison between the Al<sub>2</sub>O<sub>3</sub>–MgO–C, Al<sub>2</sub>O<sub>3</sub>–MgO, and Al<sub>2</sub>O<sub>3</sub>–C powders during heating indicates that carbon and MAS act in concert to inhibit the growth of Al<sub>2</sub>O<sub>3</sub>, which contribute to the rapid formation MgAlON and high sinterability of prepared MgAlON powders.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20325","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Utilizing γ-Al2O3, MgO, and black carbon powders as starting materials, single-phase magnesium aluminum oxynitride (MgAlON) powders with excellent sinterability were successfully synthesized by carbothermal reduction and nitridation (CRN) method, and the CRN synthesis mechanism was investigated through analyzing phase assemblage and morphology of the powders during heating. As heating to 1700°C, single-phase MgAlON is obtained, while its O/N ratio can be adjusted by controlling the composition of starting mixture and the CRN process. The MgAlON powders with O/N ratio of 9.52–11.39 (using the mixture with 8.6 wt.% MgO and 5.2 wt.% carbon black, and prepared at 1700°C for 90–150 min or 1720°C for 120 min) exhibit high sinterability. These powders were successfully fast pressureless sintered into ceramics with high transmittance (>80%@3750 nm) at 1880°C for 2.5 h. During the heating process for preparing MgAlON powder, magnesium aluminate spinel (MAS) is first formed at <1500°C, then at 1500–1600°C, along with formation of AlN via CRN and its instantaneous solid solution with MAS, MgAlON is obtained. The phase assemblage and morphology comparison between the Al2O3–MgO–C, Al2O3–MgO, and Al2O3–C powders during heating indicates that carbon and MAS act in concert to inhibit the growth of Al2O3, which contribute to the rapid formation MgAlON and high sinterability of prepared MgAlON powders.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.