Adsorption-photocatalysis for methylene blue dye removal by novel Fe-MOFs through defect engineering

IF 1.6 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yang Zhao, Tao Wan, Songsong He, Dongmei Li, Xiaomei Wang, Hao Xu, Bingjun Liu
{"title":"Adsorption-photocatalysis for methylene blue dye removal by novel Fe-MOFs through defect engineering","authors":"Yang Zhao,&nbsp;Tao Wan,&nbsp;Songsong He,&nbsp;Dongmei Li,&nbsp;Xiaomei Wang,&nbsp;Hao Xu,&nbsp;Bingjun Liu","doi":"10.1002/jccs.202400289","DOIUrl":null,"url":null,"abstract":"<p>In recent years, metal–organic frameworks (MOFs) have attracted much attention in environmental pollution control. However, most MOFs still have problems such as low utilization of visible light and easy recombination of photogenerated electrons and holes. In this study, novel defective Fe-MOFs with appropriate structural defects were prepared by solvothermal method and used to remove methylene blue (MB) in aqueous phase through adsorption and photocatalysis. Defective Fe-MOFs have Fe content as high as 10.31% with specific surface area of 40.95 m<sup>2</sup>/g, which is beneficial for both dye adsorption and photocatalytic process. Defective Fe-MOFs have spindle-like structures with sizes ranging from 40 nm to 100 nm and an average size of 69.1 nm, as well as some irregularly shaped nanoparticles. Irregular stacking of these two kinds of structure makes Fe-MOFs appropriate structural defects, large specific surface area, and mesoporous structure. Kinetics and isotherms of dye adsorption process are consistent with pseudo-first-order kinetic model and Freundlich isotherm model, respectively. Defective Fe-MOFs can absorb MB dye rapidly, reaching adsorption equilibrium within 60 min. Dye adsorption process is endothermic, spontaneous, and entropy-increasing process. After 180 min visible light illumination, dye photocatalytic efficiency of the defective Fe-MOFs reaches 97.56% in the condition of MB concentration as high as 30 mg/L. Consequently, defective Fe-MOFs with appropriate structural defects, porous structure, high Fe-O content, and strong electron-donating amino groups have huge potential applications in removing organic dyes from the aqueous solution by a green and environmentally friendly way due to their high dye adsorption and dye photocatalytic activity.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 1","pages":"51-64"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400289","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, metal–organic frameworks (MOFs) have attracted much attention in environmental pollution control. However, most MOFs still have problems such as low utilization of visible light and easy recombination of photogenerated electrons and holes. In this study, novel defective Fe-MOFs with appropriate structural defects were prepared by solvothermal method and used to remove methylene blue (MB) in aqueous phase through adsorption and photocatalysis. Defective Fe-MOFs have Fe content as high as 10.31% with specific surface area of 40.95 m2/g, which is beneficial for both dye adsorption and photocatalytic process. Defective Fe-MOFs have spindle-like structures with sizes ranging from 40 nm to 100 nm and an average size of 69.1 nm, as well as some irregularly shaped nanoparticles. Irregular stacking of these two kinds of structure makes Fe-MOFs appropriate structural defects, large specific surface area, and mesoporous structure. Kinetics and isotherms of dye adsorption process are consistent with pseudo-first-order kinetic model and Freundlich isotherm model, respectively. Defective Fe-MOFs can absorb MB dye rapidly, reaching adsorption equilibrium within 60 min. Dye adsorption process is endothermic, spontaneous, and entropy-increasing process. After 180 min visible light illumination, dye photocatalytic efficiency of the defective Fe-MOFs reaches 97.56% in the condition of MB concentration as high as 30 mg/L. Consequently, defective Fe-MOFs with appropriate structural defects, porous structure, high Fe-O content, and strong electron-donating amino groups have huge potential applications in removing organic dyes from the aqueous solution by a green and environmentally friendly way due to their high dye adsorption and dye photocatalytic activity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
11.10%
发文量
216
审稿时长
7.5 months
期刊介绍: The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信