Development of Heuristic Strategy With Hybrid Encryption for Energy Efficient and Secure Data Storage Scheme in Blockchain-Based Mobile Edge Computing

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
Khaled M. Matrouk, Punithavathi Rasappan, Priyanka Bhutani, Shikha Mittal, A. Sahaya Anselin Nisha, Reddy Madhavi Konduru
{"title":"Development of Heuristic Strategy With Hybrid Encryption for Energy Efficient and Secure Data Storage Scheme in Blockchain-Based Mobile Edge Computing","authors":"Khaled M. Matrouk,&nbsp;Punithavathi Rasappan,&nbsp;Priyanka Bhutani,&nbsp;Shikha Mittal,&nbsp;A. Sahaya Anselin Nisha,&nbsp;Reddy Madhavi Konduru","doi":"10.1002/ett.70057","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Internet of Things (IoT) devices is extensively employed to collect physiological health data and provide diverse services to end-users. Nevertheless, in recent applications, cloud computing-based IoT proves beneficial for standard data storage and ensuring high-security information sharing. Due to limitations in battery capacity, storage, and computing power, IoT devices are often considered resource-constrained. Consequently, data signing by IoT devices, aimed at ensuring data integrity and authentication, typically demands significant computational resources. Unsafe data storage and high latency are considered as the major issues in the IoT-based data storage mechanism for duplicating and misusing the information while it is stored in the cloud database. Hence, blockchain technologies are needed to provide high security over the stored data. Hence, the research aimed to implement an efficient blockchain-based data storage system in mobile edge computing, safeguarding data from unauthorized access. In this approach, it contains four layers that are cloud layer, the entity layer, the block-chain layer, and the edge computing layer. The user's data are stored in the optimal location in the entity layer, where the data storing location is find out using the proposed Hybrid Battle Royale with Archimedes Optimization Algorithm (HBRAOA). In the edge computing layer, an optimal key-based homomorphic encryption algorithm using Elliptic Curve Cryptography (ECC) is introduced to encrypt data with the most optimal key, ensuring secure storage. This encryption method leverages the same HBRAOA to enhance the efficiency. Next, the digital signature is demonstrated to give the authorization of the user, and it is distributed to the blockchain layer. Thus, the indexes of the shared data are stored in the blockchain layer to avoid fault tolerance and tamper-proofing. Finally, the cloud layer receives the valuable encrypted data, and the authenticated users with known encrypted keys are able to access the data by decrypting them. The result analysis shows that the performance of the developed model, which attains 27%, 98%, 35%, and 18% enhanced than Particle Swarm Optimization (PSO)-ECC, Black Widow Optimization (BWO)-ECC, Battle Royale Optimization (BRO)-ECC and Archimedes Optimization Algorithm (AOA)-ECC. The efficiency of the proposed blockchain-based mobile edge computing scheme with the optimization strategy is validated by conducting several similarity measures over the conventional methods.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70057","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Things (IoT) devices is extensively employed to collect physiological health data and provide diverse services to end-users. Nevertheless, in recent applications, cloud computing-based IoT proves beneficial for standard data storage and ensuring high-security information sharing. Due to limitations in battery capacity, storage, and computing power, IoT devices are often considered resource-constrained. Consequently, data signing by IoT devices, aimed at ensuring data integrity and authentication, typically demands significant computational resources. Unsafe data storage and high latency are considered as the major issues in the IoT-based data storage mechanism for duplicating and misusing the information while it is stored in the cloud database. Hence, blockchain technologies are needed to provide high security over the stored data. Hence, the research aimed to implement an efficient blockchain-based data storage system in mobile edge computing, safeguarding data from unauthorized access. In this approach, it contains four layers that are cloud layer, the entity layer, the block-chain layer, and the edge computing layer. The user's data are stored in the optimal location in the entity layer, where the data storing location is find out using the proposed Hybrid Battle Royale with Archimedes Optimization Algorithm (HBRAOA). In the edge computing layer, an optimal key-based homomorphic encryption algorithm using Elliptic Curve Cryptography (ECC) is introduced to encrypt data with the most optimal key, ensuring secure storage. This encryption method leverages the same HBRAOA to enhance the efficiency. Next, the digital signature is demonstrated to give the authorization of the user, and it is distributed to the blockchain layer. Thus, the indexes of the shared data are stored in the blockchain layer to avoid fault tolerance and tamper-proofing. Finally, the cloud layer receives the valuable encrypted data, and the authenticated users with known encrypted keys are able to access the data by decrypting them. The result analysis shows that the performance of the developed model, which attains 27%, 98%, 35%, and 18% enhanced than Particle Swarm Optimization (PSO)-ECC, Black Widow Optimization (BWO)-ECC, Battle Royale Optimization (BRO)-ECC and Archimedes Optimization Algorithm (AOA)-ECC. The efficiency of the proposed blockchain-based mobile edge computing scheme with the optimization strategy is validated by conducting several similarity measures over the conventional methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信