Experimental Evidence of Rapidly Decaying Environmental DNA Highlights Infection Risk from Two Major Amphibian Pathogens

Q1 Agricultural and Biological Sciences
Joseph D. Trafford, Trenton W. J. Garner, David J. Murrell, Julia J. Day
{"title":"Experimental Evidence of Rapidly Decaying Environmental DNA Highlights Infection Risk from Two Major Amphibian Pathogens","authors":"Joseph D. Trafford,&nbsp;Trenton W. J. Garner,&nbsp;David J. Murrell,&nbsp;Julia J. Day","doi":"10.1002/edn3.70051","DOIUrl":null,"url":null,"abstract":"<p>Infectious diseases spread through international wildlife trade networks, presenting major conservation and welfare challenges. The diseases amphibian chytridiomycosis (caused predominantly by chytrid fungus <i>Batrachochytrium dendrobatidis, Bd</i>) and ranavirosis (caused by iridoviruses in the genus <i>Ranavirus, Rv</i>) are the result of infection by globally distributed pathogens. These pathogens spread internationally through live-animal trade networks and have driven population declines, mass mortalities, and community collapse for a broad range of amphibian species. Environmental (e)DNA methods may provide highly sensitive and non-invasive pathogen surveillance for traded or wild amphibians. To investigate the relationship between eDNA detection and environmental pathogen persistence, eDNA degradation rates were quantified across a range of temperatures (15°C–25°C) for both <i>Bd</i> and <i>Ranavirus.</i> Estimated decay rates suggest that overall pathogen eDNA concentration degrades by 99% between 18.9–52.4 h. Low levels of pathogen eDNA remained detectable for the duration of the experiment (&gt; 28 days). Time was found to have a significant negative effect on eDNA concentration for both pathogens (<i>p</i> &lt; 0.001). The negative effect of temperature on eDNA concentration was significant for both pathogens (20°C for <i>Rv</i>, <i>p</i> &lt; 0.05; 25°C for <i>Bd/Rv p</i> &lt; 0.001). We argue that high concentrations of eDNA represent viable pathogen in the environment, demonstrating the usefulness of eDNA for the monitoring of disease status of consignments of traded amphibians.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Infectious diseases spread through international wildlife trade networks, presenting major conservation and welfare challenges. The diseases amphibian chytridiomycosis (caused predominantly by chytrid fungus Batrachochytrium dendrobatidis, Bd) and ranavirosis (caused by iridoviruses in the genus Ranavirus, Rv) are the result of infection by globally distributed pathogens. These pathogens spread internationally through live-animal trade networks and have driven population declines, mass mortalities, and community collapse for a broad range of amphibian species. Environmental (e)DNA methods may provide highly sensitive and non-invasive pathogen surveillance for traded or wild amphibians. To investigate the relationship between eDNA detection and environmental pathogen persistence, eDNA degradation rates were quantified across a range of temperatures (15°C–25°C) for both Bd and Ranavirus. Estimated decay rates suggest that overall pathogen eDNA concentration degrades by 99% between 18.9–52.4 h. Low levels of pathogen eDNA remained detectable for the duration of the experiment (> 28 days). Time was found to have a significant negative effect on eDNA concentration for both pathogens (p < 0.001). The negative effect of temperature on eDNA concentration was significant for both pathogens (20°C for Rv, p < 0.05; 25°C for Bd/Rv p < 0.001). We argue that high concentrations of eDNA represent viable pathogen in the environment, demonstrating the usefulness of eDNA for the monitoring of disease status of consignments of traded amphibians.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信