{"title":"Prediction of airport surface potential conflict based on GNN-LSTM","authors":"Ligang Yuan, Daoming Fang, Haiyan Chen, Jing Liu","doi":"10.1049/itr2.12611","DOIUrl":null,"url":null,"abstract":"<p>The development of the civil aviation industry has contributed to a steady increase in the number of daily flight operations at airports, which in turn has led to increasingly complex airport ground layouts. To aid airport managers in understanding the operational situation on the airport surface, this paper introduces a predictive model for airport ground conflict situations based on GNN-LSTM. This model identifies potential conflicts, conflict hotspots, and conflict hotspots zones, designating key intersections on taxiways as conflict hotspots according to taxiing rules. A conflict network is constructed, employing GNN with an integrated attention mechanism to extract structural features of the network, while LSTM is utilized to capture temporal features. After tuning the model parameters, predictions are made regarding the overall potential number of potential conflicts on the surface. To validate the effectiveness of the model, experimental analysis is conducted using AirTOp simulation data from Shenzhen Bao'an Airport, comparing GNN-LSTM model with GNN-GRU, LSTM, and GRU models, using RMSE and MAE as loss functions. The results demonstrate that he proposed modelling approach effectively extracts the temporal features of potential conflict and GNN-LSTM model outperforms other models in predicting the overall number of potential conflicts.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12611","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12611","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of the civil aviation industry has contributed to a steady increase in the number of daily flight operations at airports, which in turn has led to increasingly complex airport ground layouts. To aid airport managers in understanding the operational situation on the airport surface, this paper introduces a predictive model for airport ground conflict situations based on GNN-LSTM. This model identifies potential conflicts, conflict hotspots, and conflict hotspots zones, designating key intersections on taxiways as conflict hotspots according to taxiing rules. A conflict network is constructed, employing GNN with an integrated attention mechanism to extract structural features of the network, while LSTM is utilized to capture temporal features. After tuning the model parameters, predictions are made regarding the overall potential number of potential conflicts on the surface. To validate the effectiveness of the model, experimental analysis is conducted using AirTOp simulation data from Shenzhen Bao'an Airport, comparing GNN-LSTM model with GNN-GRU, LSTM, and GRU models, using RMSE and MAE as loss functions. The results demonstrate that he proposed modelling approach effectively extracts the temporal features of potential conflict and GNN-LSTM model outperforms other models in predicting the overall number of potential conflicts.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf