Lorenzo Lattanzi, Alberto Conte, Augusto Sin, Javier Mena Garcia, Clive A. Randall, Paolo Colombo
{"title":"Cold sintering of geopolymer powders","authors":"Lorenzo Lattanzi, Alberto Conte, Augusto Sin, Javier Mena Garcia, Clive A. Randall, Paolo Colombo","doi":"10.1111/jace.20331","DOIUrl":null,"url":null,"abstract":"<p>Geopolymers (GP) represent a promising class of inorganic materials with diverse applications due to their properties, including high temperature resistance and strong interfacial bonding ability. They are produced through alkali activation of aluminosilicate sources, such as metakaolin or fly ashes. Despite their attractive characteristics, conventional casting methods for GP production often result in prolonged curing times and inferior mechanical properties to OPC or other benchmark materials. In this study, we investigated the feasibility of rapidly densifying GP matrices using cold sintering technology (CSP), a novel approach previously employed in ceramic systems. Through CSP, it was possible to obtain a dense body starting from GP sodium-based powder with optimal moisture content (10% wt.) under mild isostatic pressure (70 MPa) and moderate temperature (150°C) conditions, with a short duration process (10 min). The resulting products exhibited chemical stability (high resistance to boiling test), high density (> 90% theoretical density) and good mechanical properties (flexural strength equal to 30 MPa and compressive strength over 200 MPa) without requiring additional thermal treatments. SEM, EDS and NMR studies indicated that the predominant densification mechanism was likely to be homogeneous dissolutions and precipitation of the material, consistent with pressure solution creep. Dilatometric tests were performed to track the densification process in real-time and to determine the activation energy, which revealed an exceptionally low value for the system (21.7 kJ/mol). Our results demonstrate the potential of CSP as a rapid and efficient method for producing high-quality GP-based components, paving the way for their broader application in various fields.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20331","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20331","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Geopolymers (GP) represent a promising class of inorganic materials with diverse applications due to their properties, including high temperature resistance and strong interfacial bonding ability. They are produced through alkali activation of aluminosilicate sources, such as metakaolin or fly ashes. Despite their attractive characteristics, conventional casting methods for GP production often result in prolonged curing times and inferior mechanical properties to OPC or other benchmark materials. In this study, we investigated the feasibility of rapidly densifying GP matrices using cold sintering technology (CSP), a novel approach previously employed in ceramic systems. Through CSP, it was possible to obtain a dense body starting from GP sodium-based powder with optimal moisture content (10% wt.) under mild isostatic pressure (70 MPa) and moderate temperature (150°C) conditions, with a short duration process (10 min). The resulting products exhibited chemical stability (high resistance to boiling test), high density (> 90% theoretical density) and good mechanical properties (flexural strength equal to 30 MPa and compressive strength over 200 MPa) without requiring additional thermal treatments. SEM, EDS and NMR studies indicated that the predominant densification mechanism was likely to be homogeneous dissolutions and precipitation of the material, consistent with pressure solution creep. Dilatometric tests were performed to track the densification process in real-time and to determine the activation energy, which revealed an exceptionally low value for the system (21.7 kJ/mol). Our results demonstrate the potential of CSP as a rapid and efficient method for producing high-quality GP-based components, paving the way for their broader application in various fields.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.