Enhanced photocatalytic degradation of methylene blue dye by ZnO nanoparticles: Synthesis, characterization, and efficiency assessment

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL
Hajar Saadi, El Houssine Atmani, Nejma Fazouan
{"title":"Enhanced photocatalytic degradation of methylene blue dye by ZnO nanoparticles: Synthesis, characterization, and efficiency assessment","authors":"Hajar Saadi,&nbsp;El Houssine Atmani,&nbsp;Nejma Fazouan","doi":"10.1002/ep.14529","DOIUrl":null,"url":null,"abstract":"<p>The release of synthetic dyes from the textile industry into aquatic environments poses a significant threat due to their carcinogenic properties. Photocatalytic treatment methods have emerged as efficient alternatives for addressing dye contamination in water. In this study, we investigate the photocatalytic degradation of methylene blue dye using zinc oxide (ZnO) nanoparticles under UV irradiation. ZnO nanopowders were synthesized via the sol–gel process and characterized for their structural, optoelectronic, optical, and chemical properties to demonstrate their suitability for photocatalytic degradation. Photocatalytic experiments were conducted using pure ZnO nanoparticles as catalysts, resulting in a degradation efficiency of 72.3% for methylene blue. Characterization techniques, such as X-Ray Diffraction (XRD), Energy Dispersive X-Ray Analysis (EDX), Scanning Electron Microscopy (SEM), and FTIR confirmed the presence of ZnO bonds and the uniform distribution of nanoparticles with small grain sizes. Density Functional Theory (DFT) calculations using the modified Becke–Johnson (mBJ) approximation revealed a direct band gap of 3 eV for ZnO, confirming its potential for photocatalysis. These findings underscore the enhanced photocatalytic activity of ZnO nanoparticles, highlighting their potential for use in photocatalysis applications. This study contributes to the growing body of research aimed at addressing environmental challenges associated with dye contamination in water.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14529","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The release of synthetic dyes from the textile industry into aquatic environments poses a significant threat due to their carcinogenic properties. Photocatalytic treatment methods have emerged as efficient alternatives for addressing dye contamination in water. In this study, we investigate the photocatalytic degradation of methylene blue dye using zinc oxide (ZnO) nanoparticles under UV irradiation. ZnO nanopowders were synthesized via the sol–gel process and characterized for their structural, optoelectronic, optical, and chemical properties to demonstrate their suitability for photocatalytic degradation. Photocatalytic experiments were conducted using pure ZnO nanoparticles as catalysts, resulting in a degradation efficiency of 72.3% for methylene blue. Characterization techniques, such as X-Ray Diffraction (XRD), Energy Dispersive X-Ray Analysis (EDX), Scanning Electron Microscopy (SEM), and FTIR confirmed the presence of ZnO bonds and the uniform distribution of nanoparticles with small grain sizes. Density Functional Theory (DFT) calculations using the modified Becke–Johnson (mBJ) approximation revealed a direct band gap of 3 eV for ZnO, confirming its potential for photocatalysis. These findings underscore the enhanced photocatalytic activity of ZnO nanoparticles, highlighting their potential for use in photocatalysis applications. This study contributes to the growing body of research aimed at addressing environmental challenges associated with dye contamination in water.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Progress & Sustainable Energy
Environmental Progress & Sustainable Energy 环境科学-工程:化工
CiteScore
5.00
自引率
3.60%
发文量
231
审稿时长
4.3 months
期刊介绍: Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信