Studying the Structural, Electronic, and Magnetic Properties of Co2CrGa1 − xAlx Full Heusler Alloys Through Density Functional Theory and Monte Carlo Simulation

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Ali Almahmoud, Amer Almahmoud, Abdalla Obeidat, Maen Gharaibeh
{"title":"Studying the Structural, Electronic, and Magnetic Properties of Co2CrGa1 − xAlx Full Heusler Alloys Through Density Functional Theory and Monte Carlo Simulation","authors":"Ali Almahmoud,&nbsp;Amer Almahmoud,&nbsp;Abdalla Obeidat,&nbsp;Maen Gharaibeh","doi":"10.1002/qua.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Monte Carlo (MC) simulation and density functional theory (DFT) were employed to investigate the structural, mechanical, thermomagnetic, and electronic properties of the Co<sub>2</sub>CrGa<sub>1−<i>x</i></sub>Al<sub><i>x</i></sub> (<i>x</i> = 0, 0.25, 0.50, 0.75, and 1.0) full Heusler alloys. Both the pristine and doped configurations demonstrate the L2<sub>1</sub> prototype, and there is an observable decrease in the lattice parameter as the Al concentration rises. Electronic analysis was performed in Wien2k using the Perdew–Burke–Ernzerhof of generalized gradient approximation (GGA-PBE), the modified Becke–Johnson GGA (mBJ-GGA), and the PBEsol functional, which revealed a band gap in the spin-down states of both structures by studying the band structure and density of states. The phonon dispersion relation was studied to ensure the stability of the alloy. The magnetic moments in pristine configurations closely resemble those in doped structures, with minimal changes in exchange interaction parameters. The obtained Curie temperature, determined through the MC method, falls within the range of 321–500 K. Finally, studying the magnetic properties of the Heusler alloys can contribute to advancements in spintronics and other magnetic applications.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70013","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Monte Carlo (MC) simulation and density functional theory (DFT) were employed to investigate the structural, mechanical, thermomagnetic, and electronic properties of the Co2CrGa1−xAlx (x = 0, 0.25, 0.50, 0.75, and 1.0) full Heusler alloys. Both the pristine and doped configurations demonstrate the L21 prototype, and there is an observable decrease in the lattice parameter as the Al concentration rises. Electronic analysis was performed in Wien2k using the Perdew–Burke–Ernzerhof of generalized gradient approximation (GGA-PBE), the modified Becke–Johnson GGA (mBJ-GGA), and the PBEsol functional, which revealed a band gap in the spin-down states of both structures by studying the band structure and density of states. The phonon dispersion relation was studied to ensure the stability of the alloy. The magnetic moments in pristine configurations closely resemble those in doped structures, with minimal changes in exchange interaction parameters. The obtained Curie temperature, determined through the MC method, falls within the range of 321–500 K. Finally, studying the magnetic properties of the Heusler alloys can contribute to advancements in spintronics and other magnetic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信