Theoretical Study of Halogen Anion Batteries With Ultra-Thin InSe

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Xin Wei, Fengjun Liu, Mengyu Zhu, Lin Wang, Maolin Sha
{"title":"Theoretical Study of Halogen Anion Batteries With Ultra-Thin InSe","authors":"Xin Wei,&nbsp;Fengjun Liu,&nbsp;Mengyu Zhu,&nbsp;Lin Wang,&nbsp;Maolin Sha","doi":"10.1002/qua.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We systematically explored the adsorption, diffusion, thermodynamics stability, and electrochemical performance of halogen anions (F<sup>−</sup>, Cl<sup>−</sup>, Br<sup>−</sup>, I<sup>−</sup>) on monolayer InSe using first-principles calculations. F<sup>−</sup>, due to its strong electronegativity, has a destructive effect on the surface. The rank of the adsorption ability of other three anions is Cl<sup>−</sup> &gt; Br<sup>−</sup> &gt; I<sup>−</sup> according to the value of adsorption energy, which is agreement with their electronegativity strength. It was found that the halogen anions exhibited excellent diffusion performance with low diffusion energy barriers. Cl<sup>−</sup> can adsorb up to three layer showing an excellent theoretical capacity of 415 mA h g<sup>−1</sup>, while Br<sup>−</sup> and I<sup>−</sup> cannot obtain a stable structure when the coverage exceeds 1 and (2/3) layer. In summary, this study evaluates a prospective electrode material and establishes a theoretical foundation for the development of novel rechargeable batteries.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70012","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We systematically explored the adsorption, diffusion, thermodynamics stability, and electrochemical performance of halogen anions (F, Cl, Br, I) on monolayer InSe using first-principles calculations. F, due to its strong electronegativity, has a destructive effect on the surface. The rank of the adsorption ability of other three anions is Cl > Br > I according to the value of adsorption energy, which is agreement with their electronegativity strength. It was found that the halogen anions exhibited excellent diffusion performance with low diffusion energy barriers. Cl can adsorb up to three layer showing an excellent theoretical capacity of 415 mA h g−1, while Br and I cannot obtain a stable structure when the coverage exceeds 1 and (2/3) layer. In summary, this study evaluates a prospective electrode material and establishes a theoretical foundation for the development of novel rechargeable batteries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信