Music Transmission and Performance Optimization Based on the Integration of Artificial Intelligence and 6G Network Slice

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Honghui Zhu
{"title":"Music Transmission and Performance Optimization Based on the Integration of Artificial Intelligence and 6G Network Slice","authors":"Honghui Zhu","doi":"10.1002/nem.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Network slicing, which enables efficient resource management to meet specific service requirements, provides a scalable solution for optimizing music transmission and live performance in mobile networks beyond 5G and into 6G. The research focuses on optimizing live performances as well as music transmission. Since AI-driven resource management improves performance quality and real-time music streaming in dynamic 6G network situations, these factors are interconnected. This approach allows multiple tenants, such as event organizers and music producers, to share infrastructure while customizing communication and quality standards for real-time music services. To ensure optimal resource allocation, including high bandwidth, low latency, and consistent service quality, network slices are dynamically configured by the infrastructure provider. Although the implementation of network slicing in the core network has been well studied, applying it within the radio access network (RAN) presents challenges, especially given the unpredictability of wireless channels and the strict quality of service (QoS) demands for live music streaming. For 6G networks, the article suggests a tenant-driven RAN slicing method improved by artificial intelligence (AI) to maximize music performance and transmission. A hybrid AI framework integrates a deep recurrent neural network (DRNN) for continuous monitoring and prediction of network conditions with a deep Q-network (DQN) augmented by prioritized experience replay (PER) for real-time resource adaptation. The DRNN forecasts network states to guide high-level resource allocation, whereas DQN with PER dynamically manages routing and bandwidth based on past critical network states, enabling rapid responses to fluctuating performance demands. Comparative results indicate that the suggested approach outperforms conventional techniques, achieving a latency of 25 ms, an audio quality of 4.6, and a bandwidth utilization of 90%. Simulation results in live music and enhanced mobile broadband (eMBB) environments demonstrate the proposed approach's effectiveness in minimizing latency, enhancing audio quality, and stabilizing transmission, surpassing traditional network allocation techniques.</p>\n </div>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.70000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Network slicing, which enables efficient resource management to meet specific service requirements, provides a scalable solution for optimizing music transmission and live performance in mobile networks beyond 5G and into 6G. The research focuses on optimizing live performances as well as music transmission. Since AI-driven resource management improves performance quality and real-time music streaming in dynamic 6G network situations, these factors are interconnected. This approach allows multiple tenants, such as event organizers and music producers, to share infrastructure while customizing communication and quality standards for real-time music services. To ensure optimal resource allocation, including high bandwidth, low latency, and consistent service quality, network slices are dynamically configured by the infrastructure provider. Although the implementation of network slicing in the core network has been well studied, applying it within the radio access network (RAN) presents challenges, especially given the unpredictability of wireless channels and the strict quality of service (QoS) demands for live music streaming. For 6G networks, the article suggests a tenant-driven RAN slicing method improved by artificial intelligence (AI) to maximize music performance and transmission. A hybrid AI framework integrates a deep recurrent neural network (DRNN) for continuous monitoring and prediction of network conditions with a deep Q-network (DQN) augmented by prioritized experience replay (PER) for real-time resource adaptation. The DRNN forecasts network states to guide high-level resource allocation, whereas DQN with PER dynamically manages routing and bandwidth based on past critical network states, enabling rapid responses to fluctuating performance demands. Comparative results indicate that the suggested approach outperforms conventional techniques, achieving a latency of 25 ms, an audio quality of 4.6, and a bandwidth utilization of 90%. Simulation results in live music and enhanced mobile broadband (eMBB) environments demonstrate the proposed approach's effectiveness in minimizing latency, enhancing audio quality, and stabilizing transmission, surpassing traditional network allocation techniques.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Network Management
International Journal of Network Management COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
5.10
自引率
6.70%
发文量
25
审稿时长
>12 weeks
期刊介绍: Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信