Dielectric behavior of point defects on ferroelectric films for different substrate strains by phase–field simulations

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Yu Song, Jing Wang, Houbing Huang
{"title":"Dielectric behavior of point defects on ferroelectric films for different substrate strains by phase–field simulations","authors":"Yu Song,&nbsp;Jing Wang,&nbsp;Houbing Huang","doi":"10.1111/jace.20339","DOIUrl":null,"url":null,"abstract":"<p>Relaxor films constructed by doping point defects are widely applied in various fields, including nanoelectromechanical systems, capacitive energy storage, and pyroelectric energy conversion. Despite their broad utility, the underlying mechanisms by which point defects affect the dielectric properties of these films under varying substrate strains remain insufficiently understood. This work employs a phase–field model to explore the influence of point defects on the domain structure and dielectric properties of BaTiO<sub>3</sub> and Pb(Zr,Ti)O<sub>3</sub> films, with a comparative analysis of their respective responses to different substrate strains. Our results reveal that the domain sizes in both BaTiO<sub>3</sub> and Pb(Zr,Ti)O<sub>3</sub> films decrease with doping, leading to a transition into a relaxor state. Notably, Pb(Zr,Ti)O<sub>3</sub> exhibits a dielectric peak at a lower doping concentration and a more pronounced reduction in dielectric constant, which can be attributed to its smaller domain size and greater susceptibility to phase transitions. As substrate strain increases from −4% to 4%, the dielectric constant initially rises, peaking at zero strain. Moreover, compared with Pb(Zr,Ti)O<sub>3</sub>, the BaTiO<sub>3</sub> relaxor films display a higher dielectric constant, due to a larger proportion of noninitial phases and a more uniform phase structure. These findings provide valuable theoretical insights into the manipulation of substrate strain as a strategy to tailor the dielectric properties of relaxor films.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20339","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Relaxor films constructed by doping point defects are widely applied in various fields, including nanoelectromechanical systems, capacitive energy storage, and pyroelectric energy conversion. Despite their broad utility, the underlying mechanisms by which point defects affect the dielectric properties of these films under varying substrate strains remain insufficiently understood. This work employs a phase–field model to explore the influence of point defects on the domain structure and dielectric properties of BaTiO3 and Pb(Zr,Ti)O3 films, with a comparative analysis of their respective responses to different substrate strains. Our results reveal that the domain sizes in both BaTiO3 and Pb(Zr,Ti)O3 films decrease with doping, leading to a transition into a relaxor state. Notably, Pb(Zr,Ti)O3 exhibits a dielectric peak at a lower doping concentration and a more pronounced reduction in dielectric constant, which can be attributed to its smaller domain size and greater susceptibility to phase transitions. As substrate strain increases from −4% to 4%, the dielectric constant initially rises, peaking at zero strain. Moreover, compared with Pb(Zr,Ti)O3, the BaTiO3 relaxor films display a higher dielectric constant, due to a larger proportion of noninitial phases and a more uniform phase structure. These findings provide valuable theoretical insights into the manipulation of substrate strain as a strategy to tailor the dielectric properties of relaxor films.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信