{"title":"Dielectric behavior of point defects on ferroelectric films for different substrate strains by phase–field simulations","authors":"Yu Song, Jing Wang, Houbing Huang","doi":"10.1111/jace.20339","DOIUrl":null,"url":null,"abstract":"<p>Relaxor films constructed by doping point defects are widely applied in various fields, including nanoelectromechanical systems, capacitive energy storage, and pyroelectric energy conversion. Despite their broad utility, the underlying mechanisms by which point defects affect the dielectric properties of these films under varying substrate strains remain insufficiently understood. This work employs a phase–field model to explore the influence of point defects on the domain structure and dielectric properties of BaTiO<sub>3</sub> and Pb(Zr,Ti)O<sub>3</sub> films, with a comparative analysis of their respective responses to different substrate strains. Our results reveal that the domain sizes in both BaTiO<sub>3</sub> and Pb(Zr,Ti)O<sub>3</sub> films decrease with doping, leading to a transition into a relaxor state. Notably, Pb(Zr,Ti)O<sub>3</sub> exhibits a dielectric peak at a lower doping concentration and a more pronounced reduction in dielectric constant, which can be attributed to its smaller domain size and greater susceptibility to phase transitions. As substrate strain increases from −4% to 4%, the dielectric constant initially rises, peaking at zero strain. Moreover, compared with Pb(Zr,Ti)O<sub>3</sub>, the BaTiO<sub>3</sub> relaxor films display a higher dielectric constant, due to a larger proportion of noninitial phases and a more uniform phase structure. These findings provide valuable theoretical insights into the manipulation of substrate strain as a strategy to tailor the dielectric properties of relaxor films.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20339","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Relaxor films constructed by doping point defects are widely applied in various fields, including nanoelectromechanical systems, capacitive energy storage, and pyroelectric energy conversion. Despite their broad utility, the underlying mechanisms by which point defects affect the dielectric properties of these films under varying substrate strains remain insufficiently understood. This work employs a phase–field model to explore the influence of point defects on the domain structure and dielectric properties of BaTiO3 and Pb(Zr,Ti)O3 films, with a comparative analysis of their respective responses to different substrate strains. Our results reveal that the domain sizes in both BaTiO3 and Pb(Zr,Ti)O3 films decrease with doping, leading to a transition into a relaxor state. Notably, Pb(Zr,Ti)O3 exhibits a dielectric peak at a lower doping concentration and a more pronounced reduction in dielectric constant, which can be attributed to its smaller domain size and greater susceptibility to phase transitions. As substrate strain increases from −4% to 4%, the dielectric constant initially rises, peaking at zero strain. Moreover, compared with Pb(Zr,Ti)O3, the BaTiO3 relaxor films display a higher dielectric constant, due to a larger proportion of noninitial phases and a more uniform phase structure. These findings provide valuable theoretical insights into the manipulation of substrate strain as a strategy to tailor the dielectric properties of relaxor films.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.