A Novel Approach to the Development of Natural Resin-Based Biopolymer in the Presence of a Reusable Catalyst: Characterization and Modeling of Material Properties

IF 3.9 3区 化学 Q2 POLYMER SCIENCE
Naile Angın, Murat Ertaş, Ömür Aras, Merve Genç
{"title":"A Novel Approach to the Development of Natural Resin-Based Biopolymer in the Presence of a Reusable Catalyst: Characterization and Modeling of Material Properties","authors":"Naile Angın,&nbsp;Murat Ertaş,&nbsp;Ömür Aras,&nbsp;Merve Genç","doi":"10.1002/pol.20240576","DOIUrl":null,"url":null,"abstract":"<p>The rise in environmental and health concerns has led to increasing attention to nature-derived materials. Natural resin (NR) is secreted by pine trees, and it is a great monomer source for synthesizing biopolymers. The objective of this study is to produce terpene rosin phenolic resin (TRPR) from NR, turpentine, and phenol by applying a novel polymerization technique. An environmentally friendly and reusable catalyst (Amberlyst15) was chosen instead of traditional ones. TRPR samples were chemically characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and gel permeation chromatography (GPC) analysis. The average molecular weight (Mw) of TRPR was detected as 560 g/mol. Artificial neural network (ANN) modeling was designed with three inputs (pressure, temperature, and terpene/NR ratio) and four outputs (reaction yield, acid value, saponification value, and softening point). The highest TRPR yield was obtained with a terpene/NR ratio of (1/2) at 80°C and under 3 atm. The lowest acid and saponification values were calculated as 90.54 and 100.11 mg KOH/g, respectively. The softening point of TRPR reached 80°C and it was suggested for use in the paper, ink, and adhesive industries.</p>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 1","pages":"164-177"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20240576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240576","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rise in environmental and health concerns has led to increasing attention to nature-derived materials. Natural resin (NR) is secreted by pine trees, and it is a great monomer source for synthesizing biopolymers. The objective of this study is to produce terpene rosin phenolic resin (TRPR) from NR, turpentine, and phenol by applying a novel polymerization technique. An environmentally friendly and reusable catalyst (Amberlyst15) was chosen instead of traditional ones. TRPR samples were chemically characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and gel permeation chromatography (GPC) analysis. The average molecular weight (Mw) of TRPR was detected as 560 g/mol. Artificial neural network (ANN) modeling was designed with three inputs (pressure, temperature, and terpene/NR ratio) and four outputs (reaction yield, acid value, saponification value, and softening point). The highest TRPR yield was obtained with a terpene/NR ratio of (1/2) at 80°C and under 3 atm. The lowest acid and saponification values were calculated as 90.54 and 100.11 mg KOH/g, respectively. The softening point of TRPR reached 80°C and it was suggested for use in the paper, ink, and adhesive industries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymer Science
Journal of Polymer Science POLYMER SCIENCE-
CiteScore
6.30
自引率
5.90%
发文量
264
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信