Impact of high-temperature sintering on
SiO
2
−
LiO
2
−
Al
2
O
3
−
K
2
O
−
P
2
O
5
${\rm SiO}_2{-}{\rm LiO}_2{-}{\rm Al}_2{\rm O}_3{-}{\rm K}_2{\rm O}{-}{\rm P}_2{\rm O}_5$
glass ceramics with
ZrO
2
${\rm ZrO}_2$
and
Y
2
O
3
${\rm Y}_2{\rm O}_3$
additives
Gulsan Ara Sathi Kazi, Areef Billah, Azusa Takahashi, Ko Tanno, Natsuko Hayama, Bashir Ahmmad
{"title":"Impact of high-temperature sintering on \n \n \n \n SiO\n 2\n \n −\n \n LiO\n 2\n \n −\n \n Al\n 2\n \n \n O\n 3\n \n −\n \n K\n 2\n \n O\n −\n \n P\n 2\n \n \n O\n 5\n \n \n ${\\rm SiO}_2{-}{\\rm LiO}_2{-}{\\rm Al}_2{\\rm O}_3{-}{\\rm K}_2{\\rm O}{-}{\\rm P}_2{\\rm O}_5$\n glass ceramics with \n \n \n ZrO\n 2\n \n ${\\rm ZrO}_2$\n and \n \n \n \n Y\n 2\n \n \n O\n 3\n \n \n ${\\rm Y}_2{\\rm O}_3$\n additives","authors":"Gulsan Ara Sathi Kazi, Areef Billah, Azusa Takahashi, Ko Tanno, Natsuko Hayama, Bashir Ahmmad","doi":"10.1111/jace.20244","DOIUrl":null,"url":null,"abstract":"<p>The influence of multi-step sintering at high temperatures was used to meticulously characterize the crystallization, mechanical, and optical properties of a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SiO</mi>\n <mn>2</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>Li</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n <mo>−</mo>\n <msub>\n <mi>Al</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n <mo>−</mo>\n <msub>\n <mi>P</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>5</mn>\n </msub>\n </mrow>\n <annotation>${\\rm SiO}_2{-}{\\rm Li}_2{\\rm O}{-}{\\rm Al}_2{\\rm O}_3{-}{\\rm K}_2{\\rm O}{-}{\\rm P}_2{\\rm O}_5$</annotation>\n </semantics></math> glass system with the addition of <span></span><math>\n <semantics>\n <msub>\n <mi>ZrO</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm ZrO}_2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Y}_2$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm O}_3$</annotation>\n </semantics></math>. The research began with a novel base glass composition of 3.8 wt% <span></span><math>\n <semantics>\n <msub>\n <mi>Li</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Li}_2$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <msub>\n <mi>CO</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm CO}_3$</annotation>\n </semantics></math>, 4.2 wt% <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm K}_2$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <msub>\n <mi>CO</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm CO}_3$</annotation>\n </semantics></math>, 4.5 wt% <span></span><math>\n <semantics>\n <msub>\n <mi>Al</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Al}_2$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm O}_3$</annotation>\n </semantics></math>, 35 wt% <span></span><math>\n <semantics>\n <msub>\n <mi>SiO</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm SiO}_2$</annotation>\n </semantics></math>, and 2.5 wt% <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>NH</mi>\n <mn>4</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msub>\n <annotation>${({\\rm NH}_4)}_2$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <msub>\n <mi>HPO</mi>\n <mn>4</mn>\n </msub>\n <annotation>${\\rm HPO}_4$</annotation>\n </semantics></math>, to which 47 wt% <span></span><math>\n <semantics>\n <msub>\n <mi>ZrO</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm ZrO}_2$</annotation>\n </semantics></math> and 3 wt% <span></span><math>\n <semantics>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Y}_2$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\rm O}_3$</annotation>\n </semantics></math> added. The initial glass powder was sintered in two steps at low temperatures. Either 500<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ{\\rm C}$</annotation>\n </semantics></math> for 10 min or 500<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ{\\rm C}$</annotation>\n </semantics></math> for 10 min then a raise to 650<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ{\\rm C}$</annotation>\n </semantics></math> for 20 min was used in the first step. Then, the second step of sintering was done at 850<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ{\\rm C}$</annotation>\n </semantics></math>. Finally, after the pellet preparation, final calcination was conducted at 1450<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <mi>C</mi>\n </mrow>\n <annotation>$^\\circ{\\rm C}$</annotation>\n </semantics></math>. The resulting microstructure was a composite material with various grain components embedded within a glass matrix. The low first sintering temperature triggered the optimum crystal growth, and after the final calcination process, a new glass-ceramic named <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZrSiO</mi>\n <mn>4</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>ZrO</mi>\n <mn>2</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>Zr</mi>\n <mn>0.95</mn>\n </msub>\n <msub>\n <mi>Y</mi>\n <mn>0.066</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>1.985</mn>\n </msub>\n </mrow>\n <annotation>${\\rm ZrSiO}_4{-}{\\rm ZrO}_2{-}{\\rm Zr}_{0.95}{\\rm Y}_{0.066}{\\rm O}_{1.985}$</annotation>\n </semantics></math>–<span></span><math>\n <semantics>\n <mrow>\n <mi>LiAl</mi>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>SiO</mi>\n <mn>3</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\rm LiAl}{({\\rm SiO}_3)}_2$</annotation>\n </semantics></math> was synthesized. The synthesized ceramics demonstrated strong diametral tensile strength and excellent Vickers micro-hardness values, a remarkable refractive index, and optical band gaps larger than 3.1 eV. Consequently, the process of multi-step sintering at high temperatures clenches the impending manufacture of a novel composite ceramic having remarkable hardness and good optical properties that encourage several biological, technological, and industrial applications.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20244","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of multi-step sintering at high temperatures was used to meticulously characterize the crystallization, mechanical, and optical properties of a glass system with the addition of and . The research began with a novel base glass composition of 3.8 wt% , 4.2 wt% , 4.5 wt% , 35 wt% , and 2.5 wt% , to which 47 wt% and 3 wt% added. The initial glass powder was sintered in two steps at low temperatures. Either 500 for 10 min or 500 for 10 min then a raise to 650 for 20 min was used in the first step. Then, the second step of sintering was done at 850. Finally, after the pellet preparation, final calcination was conducted at 1450. The resulting microstructure was a composite material with various grain components embedded within a glass matrix. The low first sintering temperature triggered the optimum crystal growth, and after the final calcination process, a new glass-ceramic named – was synthesized. The synthesized ceramics demonstrated strong diametral tensile strength and excellent Vickers micro-hardness values, a remarkable refractive index, and optical band gaps larger than 3.1 eV. Consequently, the process of multi-step sintering at high temperatures clenches the impending manufacture of a novel composite ceramic having remarkable hardness and good optical properties that encourage several biological, technological, and industrial applications.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.