{"title":"A Global Lakes/Reservoirs Surface Extent Dataset (GLRSED): An Integration of Multi-Source Data","authors":"Bingxin Bai, Lixia Mu, Yumin Tan","doi":"10.1002/gdj3.285","DOIUrl":null,"url":null,"abstract":"<p>The surface water extent of global lakes/reservoirs is a fundamental input data for many studies. Although some datasets are currently available, issues such as incomplete data or spatial inconsistencies persist. In this study, a new Global Lakes/Reservoirs Surface Extent Dataset (GLRSED), which provides a more comprehensive spatial extent and basic attributes (e.g., name, area, source, depth and type) of 2.17 million individual features, was developed based on HydroLAKES and OpenStreetMap (OSM). In addition, by spatially overlaying with mountainous polygon, lakes/reservoirs in mountainous areas were identified. The Global Reservoir and Dam database (GRanD), GlObal geOreferenced Database of Dams (GOODD), Georeferenced global Dams and Reserves (GeoDAR) dataset, and OSM were used to distinguish reservoirs from natural lakes. The lakes/reservoirs in the rivers were identified by overlaying them with the Surface Water and Ocean Topography (SWOT) Mission River Database (SWORD). Similarly, endorheic, glacier-fed and permafrost-fed lakes/reservoirs were identified using the same method. Furthermore, the coverage of the SWOT ground track for each lake/reservoir in the GLRSED was calculated to explore the potential of SWOT in monitoring water resources. Although preliminary and with some limitations, this dataset is promising. It can provide essential data for monitoring global lakes/reservoirs, support refined water resource management, and facilitate comprehensive studies on the impacts of human activities and climate change on these water bodies.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.285","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.285","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The surface water extent of global lakes/reservoirs is a fundamental input data for many studies. Although some datasets are currently available, issues such as incomplete data or spatial inconsistencies persist. In this study, a new Global Lakes/Reservoirs Surface Extent Dataset (GLRSED), which provides a more comprehensive spatial extent and basic attributes (e.g., name, area, source, depth and type) of 2.17 million individual features, was developed based on HydroLAKES and OpenStreetMap (OSM). In addition, by spatially overlaying with mountainous polygon, lakes/reservoirs in mountainous areas were identified. The Global Reservoir and Dam database (GRanD), GlObal geOreferenced Database of Dams (GOODD), Georeferenced global Dams and Reserves (GeoDAR) dataset, and OSM were used to distinguish reservoirs from natural lakes. The lakes/reservoirs in the rivers were identified by overlaying them with the Surface Water and Ocean Topography (SWOT) Mission River Database (SWORD). Similarly, endorheic, glacier-fed and permafrost-fed lakes/reservoirs were identified using the same method. Furthermore, the coverage of the SWOT ground track for each lake/reservoir in the GLRSED was calculated to explore the potential of SWOT in monitoring water resources. Although preliminary and with some limitations, this dataset is promising. It can provide essential data for monitoring global lakes/reservoirs, support refined water resource management, and facilitate comprehensive studies on the impacts of human activities and climate change on these water bodies.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.