Blockchain Consensus Scheme Based on the Proof of Distributed Deep Learning Work

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
IET Software Pub Date : 2025-01-21 DOI:10.1049/sfw2/3378383
Hui Zhi, HongCheng Wu, Yu Huang, ChangLin Tian, SuZhen Wang
{"title":"Blockchain Consensus Scheme Based on the Proof of Distributed Deep Learning Work","authors":"Hui Zhi,&nbsp;HongCheng Wu,&nbsp;Yu Huang,&nbsp;ChangLin Tian,&nbsp;SuZhen Wang","doi":"10.1049/sfw2/3378383","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the development of artificial intelligence and blockchain technology, the training of deep learning models needs large computing resources. Meanwhile, the Proof of Work (PoW) consensus mechanism in blockchain systems often leads to the wastage of computing resources. This article combines distributed deep learning (DDL) with blockchain technology and proposes a blockchain consensus scheme based on the proof of distributed deep learning work (BCDDL) to reduce the waste of computing resources in blockchain. BCDDL treats DDL training as a mining task and allocates different training data to different nodes based on their computing power to improve the utilization rate of computing resources. In order to balance the demand and supply of computing resources and incentivize nodes to participate in training tasks and consensus, a dynamic incentive mechanism based on task size and computing resources (DIM-TSCR) is proposed. In addition, in order to reduce the impact of malicious nodes on the accuracy of the global model, a model aggregation algorithm based on training data size and model accuracy (MAA-TM) is designed. Experiments demonstrate that BCDDL can significantly increase the utilization rate of computing resources and diminish the impact of malicious nodes on the accuracy of the global model.</p>\n </div>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"2025 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2/3378383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sfw2/3378383","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of artificial intelligence and blockchain technology, the training of deep learning models needs large computing resources. Meanwhile, the Proof of Work (PoW) consensus mechanism in blockchain systems often leads to the wastage of computing resources. This article combines distributed deep learning (DDL) with blockchain technology and proposes a blockchain consensus scheme based on the proof of distributed deep learning work (BCDDL) to reduce the waste of computing resources in blockchain. BCDDL treats DDL training as a mining task and allocates different training data to different nodes based on their computing power to improve the utilization rate of computing resources. In order to balance the demand and supply of computing resources and incentivize nodes to participate in training tasks and consensus, a dynamic incentive mechanism based on task size and computing resources (DIM-TSCR) is proposed. In addition, in order to reduce the impact of malicious nodes on the accuracy of the global model, a model aggregation algorithm based on training data size and model accuracy (MAA-TM) is designed. Experiments demonstrate that BCDDL can significantly increase the utilization rate of computing resources and diminish the impact of malicious nodes on the accuracy of the global model.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Software
IET Software 工程技术-计算机:软件工程
CiteScore
4.20
自引率
0.00%
发文量
27
审稿时长
9 months
期刊介绍: IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application. Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome: Software and systems requirements engineering Formal methods, design methods, practice and experience Software architecture, aspect and object orientation, reuse and re-engineering Testing, verification and validation techniques Software dependability and measurement Human systems engineering and human-computer interaction Knowledge engineering; expert and knowledge-based systems, intelligent agents Information systems engineering Application of software engineering in industry and commerce Software engineering technology transfer Management of software development Theoretical aspects of software development Machine learning Big data and big code Cloud computing Current Special Issue. Call for papers: Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信