Estimating the crashworthiness performances of crushboxes using artificial neural network
Einschätzung der Crashsicherheit von Schockabsorbersystemen mittels künstlicher neuronaler Netzwerke
IF 1.2 4区 材料科学Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Estimating the crashworthiness performances of crushboxes using artificial neural network\n Einschätzung der Crashsicherheit von Schockabsorbersystemen mittels künstlicher neuronaler Netzwerke","authors":"O. Koçar, Ö. Adanur, F. Varol, A. S. Guldibi","doi":"10.1002/mawe.202400032","DOIUrl":null,"url":null,"abstract":"<p>Studies on the development of energy absorbing systems that minimize vehicle chassis damage in traffic accidents are increasing day by day. Many designs have been made in the studies on crushboxes used to absorb the energy released in the event of an accident. These design works are quite costly and take a long time. In this study, to design crushboxes faster and more economically was estimated using artificial neural network. The input layer of the artificial neural network model consists of three different materials, thicknesses (between 0.8 and 2.2 mm) and three different initial speeds. In the artificial neural network model, 42 different models were created by changing the different training functions (training, trainlm and trainrp), transfer functions (tansig and logsig) and the number of neurons in the hidden layer (between 9 and 33). R<sup>2</sup> and root mean square error (RMSE) methods were used to evaluate the efficiency of artificial neural network models. The training function was found to be highly accurate (R<sup>2</sup>: 0.99999 and root mean square error: 0.314727E-05) when the training function was “trainlm” and the number of neurons in the hidden layer was 33. The training and testing results of the artificial neural network model show that artificial neural networks can be used to estimate the specific energy absorption/energy/peak crush force value of crushboxes.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 1","pages":"95-109"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400032","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies on the development of energy absorbing systems that minimize vehicle chassis damage in traffic accidents are increasing day by day. Many designs have been made in the studies on crushboxes used to absorb the energy released in the event of an accident. These design works are quite costly and take a long time. In this study, to design crushboxes faster and more economically was estimated using artificial neural network. The input layer of the artificial neural network model consists of three different materials, thicknesses (between 0.8 and 2.2 mm) and three different initial speeds. In the artificial neural network model, 42 different models were created by changing the different training functions (training, trainlm and trainrp), transfer functions (tansig and logsig) and the number of neurons in the hidden layer (between 9 and 33). R2 and root mean square error (RMSE) methods were used to evaluate the efficiency of artificial neural network models. The training function was found to be highly accurate (R2: 0.99999 and root mean square error: 0.314727E-05) when the training function was “trainlm” and the number of neurons in the hidden layer was 33. The training and testing results of the artificial neural network model show that artificial neural networks can be used to estimate the specific energy absorption/energy/peak crush force value of crushboxes.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.