Computational Studies of the Optoelectronic and Charge Transport Properties of Porphyrin and Corrole-Based Molecules

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Angat Dhiman, C. N. Ramachandran
{"title":"Computational Studies of the Optoelectronic and Charge Transport Properties of Porphyrin and Corrole-Based Molecules","authors":"Angat Dhiman,&nbsp;C. N. Ramachandran","doi":"10.1002/poc.4673","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The structural, optoelectronic and charge transport properties of porphyrin and its analogues are investigated using the density functional theoretical methods. Most of the above molecules absorb in visible region with high light harvesting efficiency. The small energy gap between the frontier molecular orbitals (FMOs) suggests that porphyrin and its derivatives can be used in organic semiconductors. Electronic properties such as ionization potential, electron affinity, reorganization energy and the charge transfer integral are calculated to obtain their charge transport properties. It is revealed that porphyrin, porphyrazine and phthalocyanine act as hole transporters, whereas corrole and corrolazine act as electron transporters.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4673","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The structural, optoelectronic and charge transport properties of porphyrin and its analogues are investigated using the density functional theoretical methods. Most of the above molecules absorb in visible region with high light harvesting efficiency. The small energy gap between the frontier molecular orbitals (FMOs) suggests that porphyrin and its derivatives can be used in organic semiconductors. Electronic properties such as ionization potential, electron affinity, reorganization energy and the charge transfer integral are calculated to obtain their charge transport properties. It is revealed that porphyrin, porphyrazine and phthalocyanine act as hole transporters, whereas corrole and corrolazine act as electron transporters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信