Forecasting Realized Volatility: The Choice of Window Size

IF 3.4 3区 经济学 Q1 ECONOMICS
Yuqing Feng, Yaojie Zhang
{"title":"Forecasting Realized Volatility: The Choice of Window Size","authors":"Yuqing Feng,&nbsp;Yaojie Zhang","doi":"10.1002/for.3221","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Different window sizes may produce different empirical results. However, how to choose an ideal window size is still an open question. We investigate how the window size affects the predictive performance of volatility. The empirical results show that the loss function for volatility prediction takes on a U-shape as the window size increases. This suggests that if the window size is chosen too large or too small, the loss function tends to be large and the model's predictive accuracy decreases. A window size of between 1000 and 2000 observations is ideal for various assets because it can produce relatively minimal forecast errors. From an asset allocation perspective, a mean–variance investor can obtain sizeable utility by using a model with a low loss function value for her portfolio. Moreover, the results are robust in a variety of settings.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"692-705"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3221","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Different window sizes may produce different empirical results. However, how to choose an ideal window size is still an open question. We investigate how the window size affects the predictive performance of volatility. The empirical results show that the loss function for volatility prediction takes on a U-shape as the window size increases. This suggests that if the window size is chosen too large or too small, the loss function tends to be large and the model's predictive accuracy decreases. A window size of between 1000 and 2000 observations is ideal for various assets because it can produce relatively minimal forecast errors. From an asset allocation perspective, a mean–variance investor can obtain sizeable utility by using a model with a low loss function value for her portfolio. Moreover, the results are robust in a variety of settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信