Advances in the Simulations of Enzyme Reactivity in the Dawn of the Artificial Intelligence Age

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Katarzyna Świderek, Joan Bertran, Kirill Zinovjev, Iñaki Tuñón, Vicent Moliner
{"title":"Advances in the Simulations of Enzyme Reactivity in the Dawn of the Artificial Intelligence Age","authors":"Katarzyna Świderek,&nbsp;Joan Bertran,&nbsp;Kirill Zinovjev,&nbsp;Iñaki Tuñón,&nbsp;Vicent Moliner","doi":"10.1002/wcms.70003","DOIUrl":null,"url":null,"abstract":"<p>The study of natural enzyme catalytic processes at a molecular level can provide essential information for a rational design of new enzymes, to be applied in more efficient and environmentally friendly industrial processes. The use of computational tools, combined with experimental techniques, is providing outstanding milestones in the last decades. However, apart from the complexity associated with the nature of these large and flexible biomolecular machines, the full enzyme catalyzed process involves different physical and chemical steps. Consequently, from the computational point of view, a deep understanding of every single step requires the selection of a proper computational technique to get reliable, robust and useful results. In this article, we summarize the different computational techniques and their use in the study of every single step of the catalytic process, including conformational diversity, allostery and those to study the chemical steps, as well as in the design of new enzymes. Because of the impact of artificial intelligence in all aspects of science during the last years, special attention has been applied to methods based on these techniques, their foundations and some selected recent applications.</p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70003","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study of natural enzyme catalytic processes at a molecular level can provide essential information for a rational design of new enzymes, to be applied in more efficient and environmentally friendly industrial processes. The use of computational tools, combined with experimental techniques, is providing outstanding milestones in the last decades. However, apart from the complexity associated with the nature of these large and flexible biomolecular machines, the full enzyme catalyzed process involves different physical and chemical steps. Consequently, from the computational point of view, a deep understanding of every single step requires the selection of a proper computational technique to get reliable, robust and useful results. In this article, we summarize the different computational techniques and their use in the study of every single step of the catalytic process, including conformational diversity, allostery and those to study the chemical steps, as well as in the design of new enzymes. Because of the impact of artificial intelligence in all aspects of science during the last years, special attention has been applied to methods based on these techniques, their foundations and some selected recent applications.

Abstract Image

人工智能时代来临之际酶反应性模拟的研究进展
在分子水平上对天然酶催化过程的研究可以为合理设计新酶提供重要信息,从而应用于更高效、更环保的工业过程。计算工具的使用,结合实验技术,在过去的几十年里提供了突出的里程碑。然而,除了与这些大型灵活的生物分子机器的性质相关的复杂性之外,完整的酶催化过程涉及不同的物理和化学步骤。因此,从计算的角度来看,要深入理解每一个步骤,就需要选择合适的计算技术来获得可靠、鲁棒和有用的结果。在本文中,我们总结了不同的计算技术及其在催化过程每一步的研究中的应用,包括构象多样性、变构和化学步骤的研究,以及新酶的设计。由于人工智能在过去几年中对科学的各个方面产生了影响,人们特别关注基于这些技术的方法、它们的基础和一些选定的最新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信