Junan Zhu, Zhizhe Tang, Ping Ma, Zheng Liang, Chuanjian Wang
{"title":"DLKUNet: A Lightweight and Efficient Network With Depthwise Large Kernel for Medical Image Segmentation","authors":"Junan Zhu, Zhizhe Tang, Ping Ma, Zheng Liang, Chuanjian Wang","doi":"10.1002/ima.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate multi-organ segmentation is crucial in computer-aided diagnosis, surgical navigation, and radiotherapy. Deep learning-based methods for automated multi-organ segmentation have made significant progress recently. However, these improvements often increase model complexity, leading to higher computational costs. To address this problem, we propose a lightweight and efficient network with depthwise large kernel, called DLKUNet. Firstly, we utilize a hierarchical architecture with large kernel convolution to effectively capture multi-scale features. Secondly, we constructed three segmentation models with different layers to meet different speed and accuracy requirements. Additionally, we employ a novel training strategy that works seamlessly with this module to enhance performance. Finally, we conducted extensive experiments on the multi-organ abdominal segmentation (Synapse) and the Automated Cardiac Diagnosis Challenge (ACDC) dataset. DLKUNet-L significantly improves the 95% Hausdorff Distance to 13.89 mm with 65% parameters of Swin-Unet on the Synapse. Furthermore, DLKUNet-S and DLKUNet-M use only 4.5% and 16.52% parameters of Swin-Unet, achieving Dice Similarity Coefficient 91.71% and 91.74% on the ACDC. These results underscore the proposed model's superior performance in terms of accuracy, efficiency, and practical applicability.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate multi-organ segmentation is crucial in computer-aided diagnosis, surgical navigation, and radiotherapy. Deep learning-based methods for automated multi-organ segmentation have made significant progress recently. However, these improvements often increase model complexity, leading to higher computational costs. To address this problem, we propose a lightweight and efficient network with depthwise large kernel, called DLKUNet. Firstly, we utilize a hierarchical architecture with large kernel convolution to effectively capture multi-scale features. Secondly, we constructed three segmentation models with different layers to meet different speed and accuracy requirements. Additionally, we employ a novel training strategy that works seamlessly with this module to enhance performance. Finally, we conducted extensive experiments on the multi-organ abdominal segmentation (Synapse) and the Automated Cardiac Diagnosis Challenge (ACDC) dataset. DLKUNet-L significantly improves the 95% Hausdorff Distance to 13.89 mm with 65% parameters of Swin-Unet on the Synapse. Furthermore, DLKUNet-S and DLKUNet-M use only 4.5% and 16.52% parameters of Swin-Unet, achieving Dice Similarity Coefficient 91.71% and 91.74% on the ACDC. These results underscore the proposed model's superior performance in terms of accuracy, efficiency, and practical applicability.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.