Highly Sensitive Detection of Glucose in the Presence of Serum Based on Signal Amplification of Persistent Luminescence Nanoparticles Functionalized by Glucose Oxidase

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zied Ferjaoui, Celina Matuszewska, Jianhua Liu, Yohann Corvis, Corinne Chanéac, Bruno Viana, Ferdaous Ben Romdhane, Daniel Scherman, Nathalie Mignet, Cyrille Richard
{"title":"Highly Sensitive Detection of Glucose in the Presence of Serum Based on Signal Amplification of Persistent Luminescence Nanoparticles Functionalized by Glucose Oxidase","authors":"Zied Ferjaoui,&nbsp;Celina Matuszewska,&nbsp;Jianhua Liu,&nbsp;Yohann Corvis,&nbsp;Corinne Chanéac,&nbsp;Bruno Viana,&nbsp;Ferdaous Ben Romdhane,&nbsp;Daniel Scherman,&nbsp;Nathalie Mignet,&nbsp;Cyrille Richard","doi":"10.1002/adom.202402373","DOIUrl":null,"url":null,"abstract":"<p>A new method is presented for the in vitro detection of glucose using glucose oxidase (GOx) covalently linked to persistent luminescent nanoparticles (PLNPs). This method ensures both sensitive and specific glucose detection by exploiting the enhanced luminescence of PLNPs in the presence of H<sub>2</sub>O<sub>2</sub>, generated by an enzymatic reaction. To this end, three different PLNPs composed of ZnGa<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> (ZGO) nanoparticles are prepared by hydrothermal synthesis at 120 °C for 6 h (ZGO1), 12 h (ZGO2), and 24 h (ZGO3), followed by a calcination at 500 °C, resulting in nanoparticles with an average hydrodynamic diameter of 100 nm ± 5 nm after grinding and centrifugation. These nanoparticles are efficiently covalently functionalized with GOx, via a PEG linker. Following the production of H<sub>2</sub>O<sub>2</sub> by the enzymatic reaction between GOx bound to the ZGO surface and glucose present in 100-fold diluted serum, a significant increase in the persistent luminescent signal is observed. This phenomenon is most pronounced for ZGO2, for which a detection limit of 0.01 µ<span>m</span> and a detection range from 0.05 to 1 µ<span>m</span> is obtained. These results demonstrate the innovative potential of this new technique in glucose monitoring, opening up new avenues for real-time monitoring and effective management of diabetes.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 4","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402373","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402373","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new method is presented for the in vitro detection of glucose using glucose oxidase (GOx) covalently linked to persistent luminescent nanoparticles (PLNPs). This method ensures both sensitive and specific glucose detection by exploiting the enhanced luminescence of PLNPs in the presence of H2O2, generated by an enzymatic reaction. To this end, three different PLNPs composed of ZnGa2O4:Cr3+ (ZGO) nanoparticles are prepared by hydrothermal synthesis at 120 °C for 6 h (ZGO1), 12 h (ZGO2), and 24 h (ZGO3), followed by a calcination at 500 °C, resulting in nanoparticles with an average hydrodynamic diameter of 100 nm ± 5 nm after grinding and centrifugation. These nanoparticles are efficiently covalently functionalized with GOx, via a PEG linker. Following the production of H2O2 by the enzymatic reaction between GOx bound to the ZGO surface and glucose present in 100-fold diluted serum, a significant increase in the persistent luminescent signal is observed. This phenomenon is most pronounced for ZGO2, for which a detection limit of 0.01 µm and a detection range from 0.05 to 1 µm is obtained. These results demonstrate the innovative potential of this new technique in glucose monitoring, opening up new avenues for real-time monitoring and effective management of diabetes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信