{"title":"Numerical Solution of the Rosenau-KdV-RLW equation via combination of a polynomial scaling function collocation and finite difference method","authors":"Ömer Oruç, Alaattin Esen, Fatih Bulut","doi":"10.1002/mma.10531","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we established a polynomial scaling method to investigate the numerical solution of Rosenau–Korteweg De Vries-regularized long wave (Rosenau-KdV-RLW) equation. We start with discretization of the time variable of the equation using a finite difference approach equipped with a linearization. After the time discretization, we have used polynomial scaling functions for the discretization of the spatial variable. These two discretizations give us the desired discrete system of equations to obtain numerical solutions. We further derive an error estimate for the proposed method. We have applied the proposed method to Rosenau-KdV, Rosenau-RLW, and Rosenau-KdV-RLW equations and used error norms to examine the accuracy and reliability of the presented method. Also, to enhance accuracy of the results, we utilize Richardson extrapolation. The comparisons with the analytical solution and earlier studies that use different methods indicate that the proposed method is accurate and reliable.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 3","pages":"4015-4034"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10531","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10531","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we established a polynomial scaling method to investigate the numerical solution of Rosenau–Korteweg De Vries-regularized long wave (Rosenau-KdV-RLW) equation. We start with discretization of the time variable of the equation using a finite difference approach equipped with a linearization. After the time discretization, we have used polynomial scaling functions for the discretization of the spatial variable. These two discretizations give us the desired discrete system of equations to obtain numerical solutions. We further derive an error estimate for the proposed method. We have applied the proposed method to Rosenau-KdV, Rosenau-RLW, and Rosenau-KdV-RLW equations and used error norms to examine the accuracy and reliability of the presented method. Also, to enhance accuracy of the results, we utilize Richardson extrapolation. The comparisons with the analytical solution and earlier studies that use different methods indicate that the proposed method is accurate and reliable.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.