{"title":"A study on identifying representative trips for mobility service design","authors":"Jeongyun Kim, Sehyun Tak, Jinwon Yoon, Hwasoo Yeo","doi":"10.1049/itr2.12603","DOIUrl":null,"url":null,"abstract":"<p>Recently, with growing interest in urban mobility patterns, the demand for collecting and analysing origin-destination (OD) data is increasing. Due to the large scale and dimensionality of OD data, there are two issues in analysing the data: big-data storage and major pattern extraction. To deal with two issues at the same time, this study suggests a principal control analysis-based major demand identification method to improve the usability of microscopic OD data. Especially, this study focuses on finding principal components that preserve major patterns from OD data with small random noise so that the data can be effectively used for mobility service design. The proposed method is applied to smart card data of Seoul and Sejong and extracted major demand patterns from peak- and non-peak hour data of these cities. The degree of daily regularity, reconstruction accuracy, and compression rate of the reconstructed data is analysed varying sets of principal components. The obtained results show that the major demands contain a low volume and a large volume of demand and with lower-order principal components, major demands can be efficiently extracted by removing randomly appearing small-volume demand. In addition, the trade-off behaviour is observed between the degree of daily regularity and reconstruction accuracy depending on the compression rate. Based on the observations, it can be found that the loss of major demand patterns could be prevented when targeting a reconstruction accuracy of 90–95% and the proposed method can reduce the data size while preserving major mobility patterns.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12603","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12603","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, with growing interest in urban mobility patterns, the demand for collecting and analysing origin-destination (OD) data is increasing. Due to the large scale and dimensionality of OD data, there are two issues in analysing the data: big-data storage and major pattern extraction. To deal with two issues at the same time, this study suggests a principal control analysis-based major demand identification method to improve the usability of microscopic OD data. Especially, this study focuses on finding principal components that preserve major patterns from OD data with small random noise so that the data can be effectively used for mobility service design. The proposed method is applied to smart card data of Seoul and Sejong and extracted major demand patterns from peak- and non-peak hour data of these cities. The degree of daily regularity, reconstruction accuracy, and compression rate of the reconstructed data is analysed varying sets of principal components. The obtained results show that the major demands contain a low volume and a large volume of demand and with lower-order principal components, major demands can be efficiently extracted by removing randomly appearing small-volume demand. In addition, the trade-off behaviour is observed between the degree of daily regularity and reconstruction accuracy depending on the compression rate. Based on the observations, it can be found that the loss of major demand patterns could be prevented when targeting a reconstruction accuracy of 90–95% and the proposed method can reduce the data size while preserving major mobility patterns.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf