{"title":"Quantitative predicting physical and spectroscopic properties of silicate laser glasses using a phase diagram approach","authors":"Shuangli Dong, Weichao Wang, Qinyuan Zhang","doi":"10.1111/jace.20312","DOIUrl":null,"url":null,"abstract":"<p>Theoretical prediction of glass compositions with certain performance requirements is a long-standing challenge in glass research. The difficulty lies in revealing the relationship of glass's composition–structure–property (C–S–P), and establishing a predictive calculation method for glass properties with high accuracy. Here we determine quantitatively the C–S–P relationships of four silicate laser glasses using nearest-neighboring congruently melting compounds (CMCs) as “component and structural motifs”. For all studied silicate systems, physical properties such as density and refractive index are predicted with an error of less than 5%. Spectroscopic properties, including Judd–Ofelt parameters, fluorescence branching ratio (<i>β</i>), effective bandwidth (Δ<i>λ<sub>eff</sub></i>), emission cross-section (<i>σ<sub>e</sub></i>), gain bandwidth, and lifetime, are predicted with an error of less than 10%, with some properties such as <i>β</i>, Δλ<sub>eff</sub>, and <i>σ<sub>e</sub></i> showing an error of less than 5% in specific systems. Four C–S–P databases have also been constructed, containing detailed physical and spectroscopic properties of over 1200 compositions, facilitating the optimization of glass composition. These findings highlight the significance of nearest-neighboring CMCs in understanding and developing high-performance laser glasses.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20312","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Theoretical prediction of glass compositions with certain performance requirements is a long-standing challenge in glass research. The difficulty lies in revealing the relationship of glass's composition–structure–property (C–S–P), and establishing a predictive calculation method for glass properties with high accuracy. Here we determine quantitatively the C–S–P relationships of four silicate laser glasses using nearest-neighboring congruently melting compounds (CMCs) as “component and structural motifs”. For all studied silicate systems, physical properties such as density and refractive index are predicted with an error of less than 5%. Spectroscopic properties, including Judd–Ofelt parameters, fluorescence branching ratio (β), effective bandwidth (Δλeff), emission cross-section (σe), gain bandwidth, and lifetime, are predicted with an error of less than 10%, with some properties such as β, Δλeff, and σe showing an error of less than 5% in specific systems. Four C–S–P databases have also been constructed, containing detailed physical and spectroscopic properties of over 1200 compositions, facilitating the optimization of glass composition. These findings highlight the significance of nearest-neighboring CMCs in understanding and developing high-performance laser glasses.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.