Macrocyclic Chiral Two-Dimensional Membranes for Enantiomers Separation

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2024-11-15 DOI:10.1002/cnma.202400444
Yuning Feng, Haoling Zhang, Chengyu Zhang, Yangyang Fan, Lei Yang, Prof. Dr. Jian-Xin Zhang, Prof. Dr. Yue Sun
{"title":"Macrocyclic Chiral Two-Dimensional Membranes for Enantiomers Separation","authors":"Yuning Feng,&nbsp;Haoling Zhang,&nbsp;Chengyu Zhang,&nbsp;Yangyang Fan,&nbsp;Lei Yang,&nbsp;Prof. Dr. Jian-Xin Zhang,&nbsp;Prof. Dr. Yue Sun","doi":"10.1002/cnma.202400444","DOIUrl":null,"url":null,"abstract":"<p>Chiral enantiomers, while typically exhibiting similar physical and chemical properties, often have distinct therapeutic effects. The preparation of pure enantiomers is therefore of significant interest in the food, chemical, and pharmaceutical industries, making the separation of enantiomers highly sought after. Membrane separation technology has garnered widespread attention for its environmental friendliness and scalability. Recently, chiral two-dimensional (2D) membranes have demonstrated superior separation performance due to their ultrathin nature and orderly transmission channels. Macrocyclic chiral 2D membranes, in particular, combine the inherent cavity structure of macrocyclic molecules with the host-guest interaction capabilities that specifically recognize chiral molecules. Additionally, they benefit from the excellent chemical stability and adjustable interlayer spacing of 2D materials. This combination allows these membranes to achieve high enantioselectivity while improving flux. By optimizing the trade-off between flux and enantioselectivity, this strategy offers a promising new approach for developing advanced chiral membranes.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400444","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral enantiomers, while typically exhibiting similar physical and chemical properties, often have distinct therapeutic effects. The preparation of pure enantiomers is therefore of significant interest in the food, chemical, and pharmaceutical industries, making the separation of enantiomers highly sought after. Membrane separation technology has garnered widespread attention for its environmental friendliness and scalability. Recently, chiral two-dimensional (2D) membranes have demonstrated superior separation performance due to their ultrathin nature and orderly transmission channels. Macrocyclic chiral 2D membranes, in particular, combine the inherent cavity structure of macrocyclic molecules with the host-guest interaction capabilities that specifically recognize chiral molecules. Additionally, they benefit from the excellent chemical stability and adjustable interlayer spacing of 2D materials. This combination allows these membranes to achieve high enantioselectivity while improving flux. By optimizing the trade-off between flux and enantioselectivity, this strategy offers a promising new approach for developing advanced chiral membranes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信