Natalia Golini, Rosaria Ignaccolo, Luigi Ippoliti, Nicola Pronello
{"title":"Functional zoning of biodiversity profiles","authors":"Natalia Golini, Rosaria Ignaccolo, Luigi Ippoliti, Nicola Pronello","doi":"10.1002/env.2865","DOIUrl":null,"url":null,"abstract":"<p>Spatial mapping of biodiversity is crucial to investigate spatial variations in natural communities. Several indices have been proposed in the literature to represent biodiversity as a single statistic. However, these indices only provide information on individual dimensions of biodiversity, thus failing to grasp its complexity comprehensively. Consequently, relying solely on these single indices can lead to misleading conclusions about the actual state of biodiversity. In this work, we focus on <i>biodiversity profiles</i>, which provide a more flexible framework to express biodiversity through nonnegative and convex curves, which can be analyzed by means of functional data analysis. By treating the whole curves as single entities, we propose to achieve a <i>functional zoning</i> of the region of interest by means of a penalized model-based clustering procedure. This provides a spatial clustering of the biodiversity profiles, which is useful for policy-makers both for conserving and managing natural resources and revealing patterns of interest. Our approach is evaluated using a simulation study and discussed through the analysis of the <i>Harvard Forest Data</i>, which provides information on the spatial distribution of woody stems within a plot of the Harvard Forest.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2865","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2865","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial mapping of biodiversity is crucial to investigate spatial variations in natural communities. Several indices have been proposed in the literature to represent biodiversity as a single statistic. However, these indices only provide information on individual dimensions of biodiversity, thus failing to grasp its complexity comprehensively. Consequently, relying solely on these single indices can lead to misleading conclusions about the actual state of biodiversity. In this work, we focus on biodiversity profiles, which provide a more flexible framework to express biodiversity through nonnegative and convex curves, which can be analyzed by means of functional data analysis. By treating the whole curves as single entities, we propose to achieve a functional zoning of the region of interest by means of a penalized model-based clustering procedure. This provides a spatial clustering of the biodiversity profiles, which is useful for policy-makers both for conserving and managing natural resources and revealing patterns of interest. Our approach is evaluated using a simulation study and discussed through the analysis of the Harvard Forest Data, which provides information on the spatial distribution of woody stems within a plot of the Harvard Forest.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.