Review of current progress on additive manufacturing of medical implants and natural/synthetic fibre reinforced composites
Überblick über die aktuellen Fortschritte bei der additiven Fertigung von medizinischen Implantaten und natur-/synthetikfaserverstärkten Verbundwerkstoffen
IF 1.2 4区 材料科学Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
C. Nsanzumuhire, O. O. Daramola, I. O. Oladele, A. D. Akinwekomi
{"title":"Review of current progress on additive manufacturing of medical implants and natural/synthetic fibre reinforced composites\n Überblick über die aktuellen Fortschritte bei der additiven Fertigung von medizinischen Implantaten und natur-/synthetikfaserverstärkten Verbundwerkstoffen","authors":"C. Nsanzumuhire, O. O. Daramola, I. O. Oladele, A. D. Akinwekomi","doi":"10.1002/mawe.202400070","DOIUrl":null,"url":null,"abstract":"<p>Additive manufacturing, or 3D printing technique, is a technology that uses computerized information to generate three-dimensional solid objects. These objects are produced by feed-stocking and fusing materials layer by layer. Compared to conventional manufacturing, additive manufacturing can make geometrical shapes that are very complex within a short time with less material wastage. Remarkable applications of manufacturing technology are found in automobile, aerospace, medicine, and natural/synthetic fibre-reinforced composites. Manufactured parts are fabricated using metals, ceramics, and mainly polymers or composites. Advancements in research have recently been implemented to optimize the process. This review focuses on the research progress on current methods applied to optimize 3D printed biopolymer medical implants and natural/synthetic fibre-reinforced composites. The objective of this article is to review new opportunities to produce multifunctional materials and suggest solutions to solve persisting challenges in additive manufacturing of medical implants using natural/synthetic fiber reinforced composites. The influence of process parameters on output performance measures, as well as the modelling and simulation techniques applied, are critically established in this paper. Current 3D printing processes and technologies, including the status and future of additive manufacturing, are also critically presented. Finally, challenges and research opportunities for improved high-performing and less costly printed parts are also illustrated.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 1","pages":"17-42"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400070","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing, or 3D printing technique, is a technology that uses computerized information to generate three-dimensional solid objects. These objects are produced by feed-stocking and fusing materials layer by layer. Compared to conventional manufacturing, additive manufacturing can make geometrical shapes that are very complex within a short time with less material wastage. Remarkable applications of manufacturing technology are found in automobile, aerospace, medicine, and natural/synthetic fibre-reinforced composites. Manufactured parts are fabricated using metals, ceramics, and mainly polymers or composites. Advancements in research have recently been implemented to optimize the process. This review focuses on the research progress on current methods applied to optimize 3D printed biopolymer medical implants and natural/synthetic fibre-reinforced composites. The objective of this article is to review new opportunities to produce multifunctional materials and suggest solutions to solve persisting challenges in additive manufacturing of medical implants using natural/synthetic fiber reinforced composites. The influence of process parameters on output performance measures, as well as the modelling and simulation techniques applied, are critically established in this paper. Current 3D printing processes and technologies, including the status and future of additive manufacturing, are also critically presented. Finally, challenges and research opportunities for improved high-performing and less costly printed parts are also illustrated.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.