Nonlinear Vortex Dichroism in Chiral Molecules

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luke Cheeseman, Kayn A. Forbes
{"title":"Nonlinear Vortex Dichroism in Chiral Molecules","authors":"Luke Cheeseman,&nbsp;Kayn A. Forbes","doi":"10.1002/adom.202402151","DOIUrl":null,"url":null,"abstract":"<p>The recent discovery that linearly polarized light with a helical wavefront can exhibit vortex dichroism (also referred to as helical dichroism) has opened up new horizons in chiroptical spectroscopy with structured chiral light. Recent experiments have now pushed optical activity with vortex beams into the regime of nonlinear optics. Here the theory of two-photon absorption (TPA) of focused optical vortices by chiral molecules: nonlinear vortex dichroism (NVD) is presented. It is discovered that highly distinct features arise in the case of TPA with focused vortex beams, including the ability to probe chiral molecular structure not accessible to current methods and that the differential rate of TPA is significantly influenced by the orientation of the state of linear polarization. This study provides strong evidence that combining nonlinear optical activity with structured light provides new and improved routes to studying molecular chirality.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 3","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402151","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402151","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent discovery that linearly polarized light with a helical wavefront can exhibit vortex dichroism (also referred to as helical dichroism) has opened up new horizons in chiroptical spectroscopy with structured chiral light. Recent experiments have now pushed optical activity with vortex beams into the regime of nonlinear optics. Here the theory of two-photon absorption (TPA) of focused optical vortices by chiral molecules: nonlinear vortex dichroism (NVD) is presented. It is discovered that highly distinct features arise in the case of TPA with focused vortex beams, including the ability to probe chiral molecular structure not accessible to current methods and that the differential rate of TPA is significantly influenced by the orientation of the state of linear polarization. This study provides strong evidence that combining nonlinear optical activity with structured light provides new and improved routes to studying molecular chirality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信