Self-healing polymers in rigid and flexible perovskite photovoltaics

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-10-15 DOI:10.1002/inf2.12628
Fang-Cheng Liang, Erdi Akman, Sikandar Aftab, Mustafa K. A. Mohammed, H. H. Hegazy, Xiujuan Zhang, Fei Zhang
{"title":"Self-healing polymers in rigid and flexible perovskite photovoltaics","authors":"Fang-Cheng Liang,&nbsp;Erdi Akman,&nbsp;Sikandar Aftab,&nbsp;Mustafa K. A. Mohammed,&nbsp;H. H. Hegazy,&nbsp;Xiujuan Zhang,&nbsp;Fei Zhang","doi":"10.1002/inf2.12628","DOIUrl":null,"url":null,"abstract":"<p>Over the past 10 years, perovskite solar cell (PSC) device technologies have advanced remarkably and exhibited a notable increase in efficiency. Additionally, significant innovation approaches have improved the stability related to heat, light, and moisture of PSC devices. Despite these developments in PSCs, the instability of PSCs is a pressing problem and an urgent matter to overcome for practical application. Recently, polymers have been suggested suggestion has been presented to solve the instability issues of PSCs and increase the photovoltaic parameters of devices. Here, first, the fundamental chemical bond types of self-healing polymers are presented. Then, a comprehensive presentation of the ability of self-healing polymers in rigid and flexible PSCs to enhance the various physical, mechanical, and optoelectronic properties is presented. Furthermore, valuable insights and innovative solutions for perovskite-based optoelectronics with self-healing polymers are provided, offering guidance for future optoelectronic applications.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 1","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12628","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12628","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past 10 years, perovskite solar cell (PSC) device technologies have advanced remarkably and exhibited a notable increase in efficiency. Additionally, significant innovation approaches have improved the stability related to heat, light, and moisture of PSC devices. Despite these developments in PSCs, the instability of PSCs is a pressing problem and an urgent matter to overcome for practical application. Recently, polymers have been suggested suggestion has been presented to solve the instability issues of PSCs and increase the photovoltaic parameters of devices. Here, first, the fundamental chemical bond types of self-healing polymers are presented. Then, a comprehensive presentation of the ability of self-healing polymers in rigid and flexible PSCs to enhance the various physical, mechanical, and optoelectronic properties is presented. Furthermore, valuable insights and innovative solutions for perovskite-based optoelectronics with self-healing polymers are provided, offering guidance for future optoelectronic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信