Helton Saulo, Suvra Pal, Rubens Souza, Roberto Vila, Alan Dasilva
{"title":"Parametric Quantile Autoregressive Conditional Duration Models With Application to Intraday Value-at-Risk Forecasting","authors":"Helton Saulo, Suvra Pal, Rubens Souza, Roberto Vila, Alan Dasilva","doi":"10.1002/for.3214","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The modeling of high-frequency data that qualify financial asset transactions has been an area of relevant interest among statisticians and econometricians—above all, the analysis of time series of financial durations. Autoregressive conditional duration (ACD) models have been the main tool for modeling financial transaction data, where duration is usually defined as the time interval between two successive events. These models are usually specified in terms of a time-varying mean (or median) conditional duration. In this paper, a new extension of ACD models is proposed which is built on the basis of log-symmetric distributions reparametrized by their quantile. The proposed quantile log-symmetric conditional duration autoregressive model allows us to model different percentiles instead of the traditionally used conditional mean (or median) duration. We carry out an in-depth study of theoretical properties and practical issues, such as parameter estimation using maximum likelihood method and diagnostic analysis based on residuals. A detailed Monte Carlo simulation study is also carried out to evaluate the performance of the proposed models and estimation method in retrieving the true parameter values as well as to evaluate a form of residuals. Finally, we derive a semiparametric intraday value-at-risk (IVaR) model and then the proposed models are applied to two price duration data sets.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"589-605"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3214","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The modeling of high-frequency data that qualify financial asset transactions has been an area of relevant interest among statisticians and econometricians—above all, the analysis of time series of financial durations. Autoregressive conditional duration (ACD) models have been the main tool for modeling financial transaction data, where duration is usually defined as the time interval between two successive events. These models are usually specified in terms of a time-varying mean (or median) conditional duration. In this paper, a new extension of ACD models is proposed which is built on the basis of log-symmetric distributions reparametrized by their quantile. The proposed quantile log-symmetric conditional duration autoregressive model allows us to model different percentiles instead of the traditionally used conditional mean (or median) duration. We carry out an in-depth study of theoretical properties and practical issues, such as parameter estimation using maximum likelihood method and diagnostic analysis based on residuals. A detailed Monte Carlo simulation study is also carried out to evaluate the performance of the proposed models and estimation method in retrieving the true parameter values as well as to evaluate a form of residuals. Finally, we derive a semiparametric intraday value-at-risk (IVaR) model and then the proposed models are applied to two price duration data sets.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.