{"title":"Boarding stop inference with uncertain relationship between bus vehicles and mobile smart card readers","authors":"Peng Zhou, Yu Shen, Yuxiong Ji, Yuchuan Du","doi":"10.1049/itr2.12615","DOIUrl":null,"url":null,"abstract":"<p>Boarding stop inference for bus passengers is essential for the improvement of bus transit services. Previous studies mainly focus on matching the bus trajectories with the bus stop locations, while the relationship between smart card readers—which collect the smart card data—and bus vehicles is usually given. However, uncertainties arise in practical applications regarding the matching of vehicles and card readers. To tackle this challenge, in this study, a data-driven approach is proposed to dig into the spatiotemporal features of passengers' smart card data and bus vehicle operations. A weighted bipartite graph algorithm is developed to match the smart card readers with the bus vehicles automatically. To verify the feasibility and effectiveness of the proposed approach, a case study is conducted on the Bus Anhong Line in Shanghai, China. The inferred results of boarding stops are compared with the data from passenger counting sensors installed in the bus vehicles. The matching accuracy rate achieves 0.9539, which validates the effectiveness of the proposed matching model. In addition, the inferred data are used to present the spatiotemporal patterns of boarding passengers and identify high-demand bus stops.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12615","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12615","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Boarding stop inference for bus passengers is essential for the improvement of bus transit services. Previous studies mainly focus on matching the bus trajectories with the bus stop locations, while the relationship between smart card readers—which collect the smart card data—and bus vehicles is usually given. However, uncertainties arise in practical applications regarding the matching of vehicles and card readers. To tackle this challenge, in this study, a data-driven approach is proposed to dig into the spatiotemporal features of passengers' smart card data and bus vehicle operations. A weighted bipartite graph algorithm is developed to match the smart card readers with the bus vehicles automatically. To verify the feasibility and effectiveness of the proposed approach, a case study is conducted on the Bus Anhong Line in Shanghai, China. The inferred results of boarding stops are compared with the data from passenger counting sensors installed in the bus vehicles. The matching accuracy rate achieves 0.9539, which validates the effectiveness of the proposed matching model. In addition, the inferred data are used to present the spatiotemporal patterns of boarding passengers and identify high-demand bus stops.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf