{"title":"Integrated scheduling of gantry cranes, container trucks and yard cranes in on-dock railway operation areas at multimodal container ports","authors":"Tian Xia, Li Wang, Qin Zhang, Jing-Xin Dong, Dong-Ping Song, Xiaoning Zhu","doi":"10.1049/itr2.12600","DOIUrl":null,"url":null,"abstract":"<p>On-dock railway operation areas at sea-rail container ports play a crucial role in transferring containers between maritime and rail transportation systems. The operational efficiency of these areas depends on synchronizing rail and yard container handling equipment, including gantry cranes, container trucks, and yard cranes. However, time-sensitive container handling, seamless equipment coordination, and complex operational conflicts make multi-equipment scheduling a challenging decision-making problem. This study introduces an integrated scheduling method that both alleviates inter-equipment interferences and balances gantry cranes’ workloads. The underlying problem is formulated as a binary integer programming model using a novel space-time-state network. According to the specific model structure, a model reformulation method is proposed here to convert the original three-equipment scheduling model into a single-equipment scheduling version. Additionally, a Lagrangian relaxation-based heuristic is developed to efficiently solve the reformulated model. Numerical experiments are conducted to validate the effectiveness of the proposed solution approach under various instance settings and provide managerial insights into the problem. Computational results demonstrate that the effectiveness and efficiency of the proposed solution approach. Furthermore, the results also indicate that enhanced operational efficiency in the operation area can only be achieved when the railway and storage side handling capacities are well-matched.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12600","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
On-dock railway operation areas at sea-rail container ports play a crucial role in transferring containers between maritime and rail transportation systems. The operational efficiency of these areas depends on synchronizing rail and yard container handling equipment, including gantry cranes, container trucks, and yard cranes. However, time-sensitive container handling, seamless equipment coordination, and complex operational conflicts make multi-equipment scheduling a challenging decision-making problem. This study introduces an integrated scheduling method that both alleviates inter-equipment interferences and balances gantry cranes’ workloads. The underlying problem is formulated as a binary integer programming model using a novel space-time-state network. According to the specific model structure, a model reformulation method is proposed here to convert the original three-equipment scheduling model into a single-equipment scheduling version. Additionally, a Lagrangian relaxation-based heuristic is developed to efficiently solve the reformulated model. Numerical experiments are conducted to validate the effectiveness of the proposed solution approach under various instance settings and provide managerial insights into the problem. Computational results demonstrate that the effectiveness and efficiency of the proposed solution approach. Furthermore, the results also indicate that enhanced operational efficiency in the operation area can only be achieved when the railway and storage side handling capacities are well-matched.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf